|
import gradio as gr |
|
import openai |
|
|
|
|
|
openai.api_key = "YOUR_API_KEY" |
|
|
|
|
|
def respond_to_message(message, chat_history): |
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "user", "content": message}] |
|
) |
|
bot_message = response.choices[0].message['content'] |
|
chat_history.append((message, bot_message)) |
|
return "", chat_history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot(label="AI चैट बोर्ड") |
|
msg = gr.Textbox(label="आपका मैसेज") |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
msg.submit(respond_to_message, [msg, chatbot], [msg, chatbot]) |
|
|
|
demo.launch() |
|
|
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
def respond_to_message(message, chat_history): |
|
|
|
chat_input = "" |
|
for user, bot in chat_history: |
|
chat_input += f"User: {user}\nBot: {bot}\n" |
|
chat_input += f"User: {message}\nBot:" |
|
|
|
|
|
input_ids = tokenizer.encode(chat_input, return_tensors="pt") |
|
|
|
output = model.generate( |
|
input_ids, |
|
max_length=input_ids.shape[1] + 64, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95 |
|
) |
|
response = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
chat_history.append((message, response.strip())) |
|
return "", chat_history |
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot(label="AI चैट बोर्ड") |
|
msg = gr.Textbox(label="आपका मैसेज") |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
msg.submit(respond_to_message, [msg, chatbot], [msg, chatbot]) |
|
|
|
demo.launch() |
|
|
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
|
|
|
|
|
|
from datasets import load_dataset |
|
|
|
|
|
ds = load_dataset("KadamParth/NCERT_Chemistry_11th") |
|
|