Bagda commited on
Commit
0040eab
·
verified ·
1 Parent(s): 5b21b6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -26
app.py CHANGED
@@ -1,36 +1,20 @@
1
-
2
-
3
  import gradio as gr
4
- from transformers import AutoModelForCausalLM, AutoTokenizer
5
- import torch
6
 
7
- # Model और Tokenizer लोड करें (आप चाहें तो कोई और चैट मॉडल भी ले सकते हैं)
8
- model_name = "microsoft/DialoGPT-medium" # या "mistralai/Mistral-7B-Instruct-v0.2" (अगर Spaces पर चलता है)
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
10
- model = AutoModelForCausalLM.from_pretrained(model_name)
11
 
 
12
  def respond_to_message(message, chat_history):
13
- # Chat history को एक स्ट्रिंग में जोड़ें
14
- chat_input = ""
15
- for user, bot in chat_history:
16
- chat_input += f"User: {user}\nBot: {bot}\n"
17
- chat_input += f"User: {message}\nBot:"
18
-
19
- # Encode input
20
- input_ids = tokenizer.encode(chat_input, return_tensors="pt")
21
- # Generate response
22
- output = model.generate(
23
- input_ids,
24
- max_length=input_ids.shape[1] + 64,
25
- pad_token_id=tokenizer.eos_token_id,
26
- do_sample=True,
27
- top_k=50,
28
- top_p=0.95
29
  )
30
- response = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
31
- chat_history.append((message, response.strip()))
32
  return "", chat_history
33
 
 
34
  with gr.Blocks() as demo:
35
  chatbot = gr.Chatbot(label="AI चैट बोर्ड")
36
  msg = gr.Textbox(label="आपका मैसेज")
@@ -40,6 +24,7 @@ with gr.Blocks() as demo:
40
 
41
  demo.launch()
42
 
 
43
  from transformers import GPT2Tokenizer, GPT2LMHeadModel
44
 
45
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
 
 
 
1
  import gradio as gr
2
+ import openai
 
3
 
4
+ # OpenAI API Key (यहाँ अपनी API Key डालें)
5
+ openai.api_key = "YOUR_API_KEY"
 
 
6
 
7
+ # Backend Function: यूजर का मैसेज लेकर OpenAI से रिस्पॉन्स लाता है
8
  def respond_to_message(message, chat_history):
9
+ response = openai.ChatCompletion.create(
10
+ model="gpt-3.5-turbo",
11
+ messages=[{"role": "user", "content": message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  )
13
+ bot_message = response.choices[0].message['content']
14
+ chat_history.append((message, bot_message))
15
  return "", chat_history
16
 
17
+ # Frontend: Gradio UI
18
  with gr.Blocks() as demo:
19
  chatbot = gr.Chatbot(label="AI चैट बोर्ड")
20
  msg = gr.Textbox(label="आपका मैसेज")
 
24
 
25
  demo.launch()
26
 
27
+
28
  from transformers import GPT2Tokenizer, GPT2LMHeadModel
29
 
30
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2")