import gradio as gr import openai # OpenAI API Key (यहाँ अपनी API Key डालें) openai.api_key = "YOUR_API_KEY" # Backend Function: यूजर का मैसेज लेकर OpenAI से रिस्पॉन्स लाता है def respond_to_message(message, chat_history): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": message}] ) bot_message = response.choices[0].message['content'] chat_history.append((message, bot_message)) return "", chat_history # Frontend: Gradio UI with gr.Blocks() as demo: chatbot = gr.Chatbot(label="AI चैट बोर्ड") msg = gr.Textbox(label="आपका मैसेज") clear = gr.ClearButton([msg, chatbot]) msg.submit(respond_to_message, [msg, chatbot], [msg, chatbot]) demo.launch() from datasets import load_dataset # Login using e.g. `huggingface-cli login` to access this dataset ds = load_dataset("KadamParth/NCERT_Chemistry_11th") from transformers import OpenAIGPTTokenizer, TFOpenAIGPTModel tokenizer = OpenAIGPTTokenizer.from_pretrained("openai-community/openai-gpt") model = TFOpenAIGPTModel.from_pretrained("openai-community/openai-gpt") from transformers import OpenAIGPTTokenizer import pandas as pd # Dataset load karo (CSV, TXT, etc.) df = pd.read_csv("your_dataset.csv") # ya pd.read_table("your_dataset.txt", sep="\t") # Tokenizer load karo (optional, agar similarity check karna hai) tokenizer = OpenAIGPTTokenizer.from_pretrained("openai-community/openai-gpt") # Question poochhein question = "रासायनिक बंध क्या होता है?" # Simple keyword-based search def get_answer(question): for idx, row in df.iterrows(): if question.lower() in row['question'].lower(): return row['answer'] return "जवाब नहीं मिला।" answer = get_answer(question) print(answer)