Bagda commited on
Commit
c90ee98
·
verified ·
1 Parent(s): f4d8cc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -57
app.py CHANGED
@@ -1,64 +1,31 @@
1
  import gradio as gr
2
- from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
3
- import librosa
4
- import scipy
5
- import os
6
 
7
- # Whisper-Small model setup
8
- processor = WhisperProcessor.from_pretrained("openai/whisper-small")
9
- model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
 
10
 
11
- # Bark model setup
12
- bark_pipe = pipeline("text-to-speech", model="suno/bark")
13
-
14
- def process_audio(video_file):
15
- # Step 1: Extract audio from video (if video is uploaded)
16
- # (Agar sirf audio hai, toh skip karein)
17
- output_audio = "output_audio.wav"
18
- video = gr.Video(video_file)
19
- audio = video.audio
20
- audio.write_audiofile(output_audio)
21
- # Step 2: Speech-to-text
22
- audio, sr = librosa.load(output_audio, sr=16000)
23
- input_features = processor(audio, sampling_rate=sr, return_tensors="pt").input_features
24
- predicted_ids = model.generate(input_features)
25
- transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
26
- # Step 3: Text-to-speech
27
- speech = bark_pipe(transcription)
28
- output_file = "output_dubbed.wav"
29
- scipy.io.wavfile.write(output_file, speech["sampling_rate"], speech["audio"])
30
- # Step 4: Merge audio to video (temporary: agar video hai, toh audio replace karein)
31
- # NOTE: Gradio ke current video component ke saath direct audio replace support nahi hai,
32
- # toh hum sirf audio output file return karenge, jise user download kar sake
33
- # Agar aapko video+audio merge karna hai, toh moviepy ka use karein, aur output video file return karein
34
- # Yahan sirf audio output file return kar rahe hain
35
- return transcription, output_file
36
-
37
- # Moviepy se video+audio merge (optional, agar video chahiye)
38
- def merge_audio_to_video(video_file, audio_file, output_video="output_dubbed.mp4"):
39
- import moviepy.editor as mp
40
- video = mp.VideoFileClip(video_file)
41
- audio = mp.AudioFileClip(audio_file)
42
- video = video.set_audio(audio)
43
- video.write_videofile(output_video)
44
- return output_video
45
-
46
- # NOTE: Gradio Audio component sirf audio file upload karta hai, video file ke liye Gradio Video component use karein
47
- # Lekin Gradio Video component output mein filepath return nahi karta, toh hum sirf audio file return karenge
48
 
49
  with gr.Blocks() as demo:
50
- gr.Markdown("# Imagine: AI Video/Audio Dubbing")
51
- with gr.Row():
52
- file_in = gr.Video(label="Upload Video/Audio File")
53
- btn = gr.Button("Generate Dubbed Audio")
54
- transcription_out = gr.Textbox(label="Transcription")
55
- audio_out = gr.Audio(label="Download Dubbed Audio", type="filepath")
56
- btn.click(
57
- fn=process_audio,
58
- inputs=file_in,
59
- outputs=[transcription_out, audio_out]
60
  )
61
- # Agar video output chahiye, toh yeh function use karein (optional, Gradio Video output ke liye thoda advanced code chahiye)
62
- # Yahan sirf audio output hai
63
 
64
- demo.launch(server_name="0.0.0.0", server_port=7860)
 
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, BarkModel
3
+ import scipy.io.wavfile
4
+ import numpy as np
 
5
 
6
+ # Model और Processor लोड करें
7
+ processor = AutoProcessor.from_pretrained("suno/bark")
8
+ model = BarkModel.from_pretrained("suno/bark")
9
+ model.to("cuda") # अगर GPU उपलब्ध है
10
 
11
+ def generate_speech(text):
12
+ inputs = processor(text, voice_preset="v2/hi_speaker_1") # हिंदी के लिए
13
+ audio_array = model.generate(**inputs)
14
+ audio_array = audio_array.cpu().numpy().squeeze()
15
+ sample_rate = model.generation_config.sample_rate
16
+ scipy.io.wavfile.write("output.wav", rate=sample_rate, data=audio_array)
17
+ return "output.wav"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  with gr.Blocks() as demo:
20
+ gr.Markdown("## Suno Bark Text-to-Speech")
21
+ text_input = gr.Textbox(label="टेक्स्ट इनपुट करें")
22
+ audio_output = gr.Audio(label="ऑडियो आउटपुट")
23
+ generate_button = gr.Button("Generate Speech")
24
+ generate_button.click(
25
+ fn=generate_speech,
26
+ inputs=text_input,
27
+ outputs=audio_output
 
 
28
  )
 
 
29
 
30
+ demo.launch()
31
+