Update app.py
Browse files
app.py
CHANGED
@@ -17,47 +17,28 @@ demo = gr.Interface(
|
|
17 |
|
18 |
demo.launch()
|
19 |
|
20 |
-
|
21 |
from pytube import YouTube
|
|
|
|
|
|
|
22 |
|
|
|
23 |
video_url = "https://www.youtube.com/watch?v=YOUR_VIDEO_ID"
|
24 |
yt = YouTube(video_url)
|
25 |
stream = yt.streams.filter(only_audio=True).first()
|
26 |
stream.download(filename="video_audio.mp4")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
video = VideoFileClip("video_audio.mp4")
|
31 |
audio = video.audio
|
32 |
audio.write_audiofile("output_audio.wav")
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
37 |
-
import torch
|
38 |
-
from datasets import load_dataset
|
39 |
-
|
40 |
-
# Load model and processor
|
41 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
42 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
43 |
-
|
44 |
-
|
45 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
-
model = model.to(device)
|
47 |
-
|
48 |
-
# Load sample audio (here using a dummy dataset, aap apni audio file bhi use kar sakte hain)
|
49 |
-
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
50 |
-
sample = ds[0]["audio"]
|
51 |
-
|
52 |
-
# Prepare audio input
|
53 |
-
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
54 |
-
input_features = input_features.to(device)
|
55 |
-
|
56 |
-
# Generate transcription
|
57 |
predicted_ids = model.generate(input_features)
|
58 |
-
|
59 |
-
# Decode transcription
|
60 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
61 |
print(transcription)
|
62 |
|
63 |
-
|
|
|
17 |
|
18 |
demo.launch()
|
19 |
|
|
|
20 |
from pytube import YouTube
|
21 |
+
from moviepy.editor import VideoFileClip
|
22 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
23 |
+
import librosa
|
24 |
|
25 |
+
# Step 1: Download YouTube video as audio
|
26 |
video_url = "https://www.youtube.com/watch?v=YOUR_VIDEO_ID"
|
27 |
yt = YouTube(video_url)
|
28 |
stream = yt.streams.filter(only_audio=True).first()
|
29 |
stream.download(filename="video_audio.mp4")
|
30 |
|
31 |
+
# Step 2: Extract audio as WAV
|
|
|
32 |
video = VideoFileClip("video_audio.mp4")
|
33 |
audio = video.audio
|
34 |
audio.write_audiofile("output_audio.wav")
|
35 |
|
36 |
+
# Step 3: Speech-to-text with Whisper-Small
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
38 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
39 |
+
audio, sr = librosa.load("output_audio.wav", sr=16000)
|
40 |
+
input_features = processor(audio, sampling_rate=sr, return_tensors="pt").input_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
predicted_ids = model.generate(input_features)
|
42 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
|
|
|
43 |
print(transcription)
|
44 |
|
|