Spaces:
Runtime error
Runtime error
Added Project for Hosting
Browse files- .gitattributes +2 -27
- README.md +4 -16
- comments_toxicity.h5 +3 -0
- data_cleaning.py +291 -0
- requirements.txt +6 -0
- tokenizer.pickle +3 -0
- web_app.py +71 -0
.gitattributes
CHANGED
@@ -1,27 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
comments_toxicity.h5 filter=lfs diff=lfs merge=lfs -text
|
2 |
+
tokenizer.pickle filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,37 +1,25 @@
|
|
1 |
---
|
2 |
title: Comments Toxicity Detection
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
app_file:
|
8 |
pinned: false
|
9 |
---
|
10 |
-
|
11 |
# Configuration
|
12 |
-
|
13 |
`title`: _string_
|
14 |
Display title for the Space
|
15 |
-
|
16 |
`emoji`: _string_
|
17 |
Space emoji (emoji-only character allowed)
|
18 |
-
|
19 |
`colorFrom`: _string_
|
20 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
21 |
-
|
22 |
`colorTo`: _string_
|
23 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
24 |
-
|
25 |
`sdk`: _string_
|
26 |
Can be either `gradio` or `streamlit`
|
27 |
-
|
28 |
-
`sdk_version` : _string_
|
29 |
-
Only applicable for `streamlit` SDK.
|
30 |
-
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
31 |
-
|
32 |
`app_file`: _string_
|
33 |
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
34 |
Path is relative to the root of the repository.
|
35 |
-
|
36 |
`pinned`: _boolean_
|
37 |
-
Whether the Space stays on top of your list.
|
|
|
1 |
---
|
2 |
title: Comments Toxicity Detection
|
3 |
+
emoji: 📈
|
4 |
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
app_file: web_app.py
|
8 |
pinned: false
|
9 |
---
|
|
|
10 |
# Configuration
|
|
|
11 |
`title`: _string_
|
12 |
Display title for the Space
|
|
|
13 |
`emoji`: _string_
|
14 |
Space emoji (emoji-only character allowed)
|
|
|
15 |
`colorFrom`: _string_
|
16 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
|
|
17 |
`colorTo`: _string_
|
18 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
|
|
19 |
`sdk`: _string_
|
20 |
Can be either `gradio` or `streamlit`
|
|
|
|
|
|
|
|
|
|
|
21 |
`app_file`: _string_
|
22 |
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
23 |
Path is relative to the root of the repository.
|
|
|
24 |
`pinned`: _boolean_
|
25 |
+
Whether the Space stays on top of your list.
|
comments_toxicity.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a96667eeb86a77902701b6992185a73e59e27f42277e42d1906d42254ff1d3a
|
3 |
+
size 9172104
|
data_cleaning.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__author__ = "Baishali Dutta"
|
2 |
+
__copyright__ = "Copyright (C) 2021 Baishali Dutta"
|
3 |
+
__license__ = "Apache License 2.0"
|
4 |
+
__version__ = "0.1"
|
5 |
+
|
6 |
+
# -------------------------------------------------------------------------
|
7 |
+
# Import Libraries
|
8 |
+
# -------------------------------------------------------------------------
|
9 |
+
import re
|
10 |
+
|
11 |
+
import nltk
|
12 |
+
from nltk.corpus import stopwords
|
13 |
+
from textblob import TextBlob, Word
|
14 |
+
|
15 |
+
# -------------------------------------------------------------------------
|
16 |
+
# One-shot Instance Creation
|
17 |
+
# -------------------------------------------------------------------------
|
18 |
+
nltk.download('stopwords')
|
19 |
+
nltk.download('wordnet')
|
20 |
+
stop_words = stopwords.words('english')
|
21 |
+
|
22 |
+
|
23 |
+
# -------------------------------------------------------------------------
|
24 |
+
# Data Cleaning
|
25 |
+
# -------------------------------------------------------------------------
|
26 |
+
|
27 |
+
def convert_to_lower_case_on_string(text):
|
28 |
+
"""
|
29 |
+
Coverts the specified text to lower case
|
30 |
+
:param text: the text to convert
|
31 |
+
:return: the lower cased text
|
32 |
+
"""
|
33 |
+
return " ".join(text.lower() for text in text.split())
|
34 |
+
|
35 |
+
|
36 |
+
def convert_to_lower_case(text_column):
|
37 |
+
"""
|
38 |
+
Coverts the text in the specified column to lower case
|
39 |
+
:param text_column: the text column whose context needs to be converted
|
40 |
+
:return: the text column containing the lower cased text
|
41 |
+
"""
|
42 |
+
return text_column.apply(
|
43 |
+
lambda x: convert_to_lower_case_on_string(x))
|
44 |
+
|
45 |
+
|
46 |
+
def apply_contraction_mapping_on_string(text):
|
47 |
+
"""
|
48 |
+
Applies the contraction mapping to the specified text
|
49 |
+
:param text: the text on which the contraction will be mapped
|
50 |
+
:return: the text after the application of contraction mapping
|
51 |
+
"""
|
52 |
+
contraction_mapping = {"ain't": "is not", "aren't": "are not", "can't": "cannot", "'cause": "because",
|
53 |
+
"could've": "could have", "couldn't": "could not",
|
54 |
+
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not",
|
55 |
+
"hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'll": "he will",
|
56 |
+
"he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will",
|
57 |
+
"how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will",
|
58 |
+
"I'll've": "I will have", "I'm": "I am", "I've": "I have", "i'd": "i would",
|
59 |
+
"i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am",
|
60 |
+
"i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have",
|
61 |
+
"it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us",
|
62 |
+
"ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not",
|
63 |
+
"mightn't've": "might not have", "must've": "must have", "mustn't": "must not",
|
64 |
+
"mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have",
|
65 |
+
"o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have",
|
66 |
+
"shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
|
67 |
+
"she'd": "she would", "she'd've": "she would have", "she'll": "she will",
|
68 |
+
"she'll've": "she will have", "she's": "she is", "should've": "should have",
|
69 |
+
"shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have",
|
70 |
+
"so's": "so as",
|
71 |
+
"this's": "this is", "that'd": "that would", "that'd've": "that would have",
|
72 |
+
"that's": "that is",
|
73 |
+
"there'd": "there would", "there'd've": "there would have", "there's": "there is",
|
74 |
+
"here's": "here is",
|
75 |
+
"they'd": "they would", "they'd've": "they would have", "they'll": "they will",
|
76 |
+
"they'll've": "they will have",
|
77 |
+
"they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not",
|
78 |
+
"we'd": "we would", "we'd've": "we would have", "we'll": "we will",
|
79 |
+
"we'll've": "we will have",
|
80 |
+
"we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will",
|
81 |
+
"what'll've": "what will have",
|
82 |
+
"what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is",
|
83 |
+
"when've": "when have",
|
84 |
+
"where'd": "where did", "where's": "where is", "where've": "where have",
|
85 |
+
"who'll": "who will",
|
86 |
+
"who'll've": "who will have",
|
87 |
+
"who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have",
|
88 |
+
"will've": "will have",
|
89 |
+
"won't": "will not", "won't've": "will not have", "would've": "would have",
|
90 |
+
"wouldn't": "would not",
|
91 |
+
"wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would",
|
92 |
+
"y'all'd've": "you all would have",
|
93 |
+
"y'all're": "you all are", "y'all've": "you all have", "you'd": "you would",
|
94 |
+
"you'd've": "you would have", "you'll": "you will",
|
95 |
+
"you'll've": "you will have", "you're": "you are", "you've": "you have"}
|
96 |
+
specials = ["’", "‘", "´", "`"]
|
97 |
+
for s in specials:
|
98 |
+
text = text.replace(s, "'")
|
99 |
+
text = ' '.join([contraction_mapping[t] if t in contraction_mapping else t for t in text.split(" ")])
|
100 |
+
return text
|
101 |
+
|
102 |
+
|
103 |
+
def apply_contraction_mapping(text_column):
|
104 |
+
"""
|
105 |
+
Applies the contraction mapping to the text in the specified column
|
106 |
+
:param text_column: the text column on which the contraction will be mapped
|
107 |
+
:return: the text column after the application of contraction mapping
|
108 |
+
"""
|
109 |
+
return text_column.apply(lambda x: apply_contraction_mapping_on_string(x))
|
110 |
+
|
111 |
+
|
112 |
+
def fix_misspelled_words_on_string2(text):
|
113 |
+
"""
|
114 |
+
Fixes the misspelled words on the specified text (uses predefined misspelled dictionary)
|
115 |
+
:param text: The text to be fixed
|
116 |
+
:return: the fixed text
|
117 |
+
"""
|
118 |
+
mispelled_dict = {'colour': 'color', 'centre': 'center', 'favourite': 'favorite', 'travelling': 'traveling',
|
119 |
+
'counselling': 'counseling',
|
120 |
+
'theatre': 'theater', 'cancelled': 'canceled', 'labour': 'labor', 'organisation': 'organization',
|
121 |
+
'wwii': 'world war 2', 'citicise': 'criticize', 'youtu ': 'youtube ', 'Qoura': 'Quora',
|
122 |
+
'sallary': 'salary',
|
123 |
+
'Whta': 'What', 'narcisist': 'narcissist', 'howdo': 'how do', 'whatare': 'what are',
|
124 |
+
'howcan': 'how can',
|
125 |
+
'howmuch': 'how much', 'howmany': 'how many', 'whydo': 'why do', 'doI': 'do I',
|
126 |
+
'theBest': 'the best',
|
127 |
+
'howdoes': 'how does', 'mastrubation': 'masturbation', 'mastrubate': 'masturbate',
|
128 |
+
"mastrubating": 'masturbating',
|
129 |
+
'pennis': 'penis', 'Etherium': 'Ethereum', 'narcissit': 'narcissist', 'bigdata': 'big data',
|
130 |
+
'2k17': '2017', '2k18': '2018',
|
131 |
+
'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 'airhostess': 'air hostess', "whst": 'what',
|
132 |
+
'watsapp': 'whatsapp',
|
133 |
+
'demonitisation': 'demonetization', 'demonitization': 'demonetization',
|
134 |
+
'demonetisation': 'demonetization', ' ur ': 'your', ' u r ': 'you are'}
|
135 |
+
for word in mispelled_dict.keys():
|
136 |
+
text = text.replace(word, mispelled_dict[word])
|
137 |
+
return text
|
138 |
+
|
139 |
+
|
140 |
+
def fix_misspelled_words_on_string(text):
|
141 |
+
"""
|
142 |
+
Fixes the misspelled words on the specified text (uses TextBlob model)
|
143 |
+
:param text: The text to be fixed
|
144 |
+
:return: the fixed text
|
145 |
+
"""
|
146 |
+
b = TextBlob(text)
|
147 |
+
return str(b.correct())
|
148 |
+
|
149 |
+
|
150 |
+
def fix_misspelled_words(text_column):
|
151 |
+
"""
|
152 |
+
Fixes the misspelled words on the text column
|
153 |
+
:param text_column: The text column to be fixed
|
154 |
+
:return: the text column containing the text
|
155 |
+
"""
|
156 |
+
return text_column.apply(lambda x: fix_misspelled_words_on_string2(x))
|
157 |
+
|
158 |
+
|
159 |
+
def remove_punctuations_on_string(text):
|
160 |
+
"""
|
161 |
+
Removes all punctuations from the specified text
|
162 |
+
:param text: the text whose punctuations to be removed
|
163 |
+
:return: the text after removing the punctuations
|
164 |
+
"""
|
165 |
+
return text.replace('[^\w\s]', '')
|
166 |
+
|
167 |
+
|
168 |
+
def remove_punctuations(text_column):
|
169 |
+
"""
|
170 |
+
Removes all punctuations from the text of the specified text column
|
171 |
+
:param text_column: the text column whose punctuations to be removed
|
172 |
+
:return: the text column after removing the punctuations
|
173 |
+
"""
|
174 |
+
return remove_punctuations_on_string(text_column.str)
|
175 |
+
|
176 |
+
|
177 |
+
def remove_emojis_on_string(text):
|
178 |
+
"""
|
179 |
+
Removes emojis from the specified text
|
180 |
+
:param text: the text whose emojis need to be removed
|
181 |
+
:return: the text after removing the emojis
|
182 |
+
"""
|
183 |
+
emoji_pattern = re.compile("["
|
184 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
185 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
186 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
187 |
+
u"\U0001F1E0-\U0001F1FF" # flags
|
188 |
+
u"\U00002702-\U000027B0"
|
189 |
+
u"\U000024C2-\U0001F251"
|
190 |
+
"]+", flags=re.UNICODE)
|
191 |
+
return emoji_pattern.sub(r'', text)
|
192 |
+
|
193 |
+
|
194 |
+
def remove_emojis(text_column):
|
195 |
+
"""
|
196 |
+
Removes emojis from the text of the specified column
|
197 |
+
:param text_column: the text column whose emojis need to be removed
|
198 |
+
:return: the text column after removing the emojis
|
199 |
+
"""
|
200 |
+
return text_column.apply(lambda x: remove_emojis_on_string(x))
|
201 |
+
|
202 |
+
|
203 |
+
def remove_stopwords_on_string(text):
|
204 |
+
"""
|
205 |
+
Removes all stop words from the specified text
|
206 |
+
:param text: the text whose stop words need to be removed
|
207 |
+
:return: the text after removing the stop words
|
208 |
+
"""
|
209 |
+
return " ".join(x for x in text.split() if x not in stop_words)
|
210 |
+
|
211 |
+
|
212 |
+
def remove_stopwords(text_column):
|
213 |
+
"""
|
214 |
+
Removes all stop words from the text of the specified column
|
215 |
+
:param text_column: the text column whose stop words need to be removed
|
216 |
+
:return: the text column after removing the stop words
|
217 |
+
"""
|
218 |
+
return text_column.apply(
|
219 |
+
lambda x: remove_stopwords_on_string(x))
|
220 |
+
|
221 |
+
|
222 |
+
def lemmatize_on_string(text):
|
223 |
+
"""
|
224 |
+
Lemmatizes the specified text
|
225 |
+
:param text: the text which needs to be lemmatized
|
226 |
+
:return: the lemmatized text
|
227 |
+
"""
|
228 |
+
blob = TextBlob(text).split()
|
229 |
+
result=[]
|
230 |
+
for word in blob:
|
231 |
+
expected_str = Word(word)
|
232 |
+
expected_str = expected_str.lemmatize()
|
233 |
+
result.append(expected_str)
|
234 |
+
return " ".join(result)
|
235 |
+
|
236 |
+
|
237 |
+
def lemmatize(text_column):
|
238 |
+
"""
|
239 |
+
Lemmatizes the text of the specified text column
|
240 |
+
:param text_column: the text column which needs to be lemmatized
|
241 |
+
:return: the lemmatized text column
|
242 |
+
"""
|
243 |
+
return text_column.apply(lemmatize_on_string)
|
244 |
+
|
245 |
+
|
246 |
+
def clean_text_column(text_column):
|
247 |
+
"""
|
248 |
+
Cleans the data specified in the text column
|
249 |
+
The cleaning procedure is as follows:
|
250 |
+
1. Convert the context to lower case
|
251 |
+
2. Apply contraction mapping in which we fix shorter usages of english sentences
|
252 |
+
3. Fixe misspelled words
|
253 |
+
4. Remove all punctuations
|
254 |
+
5. Remove all emojis
|
255 |
+
6. Remove all stop words
|
256 |
+
7. Apply lemmatisation
|
257 |
+
:return: the text column with the cleaned data
|
258 |
+
"""
|
259 |
+
text_column = convert_to_lower_case(text_column)
|
260 |
+
text_column = apply_contraction_mapping(text_column)
|
261 |
+
text_column = fix_misspelled_words(text_column)
|
262 |
+
text_column = remove_punctuations(text_column)
|
263 |
+
text_column = remove_emojis(text_column)
|
264 |
+
text_column = remove_stopwords(text_column)
|
265 |
+
text_column = lemmatize(text_column)
|
266 |
+
|
267 |
+
return text_column
|
268 |
+
|
269 |
+
|
270 |
+
def clean_text(text):
|
271 |
+
"""
|
272 |
+
Cleans the specified text
|
273 |
+
The cleaning procedure is as follows:
|
274 |
+
1. Convert the context to lower case
|
275 |
+
2. Apply contraction mapping in which we fix shorter usages of english sentences
|
276 |
+
3. Fix misspelled words
|
277 |
+
4. Remove all punctuations
|
278 |
+
5. Remove all emojis
|
279 |
+
6. Remove all stop words
|
280 |
+
7. Apply lemmatization
|
281 |
+
:return: the cleaned text
|
282 |
+
"""
|
283 |
+
text = convert_to_lower_case_on_string(text)
|
284 |
+
text = apply_contraction_mapping_on_string(text)
|
285 |
+
text = fix_misspelled_words_on_string(text)
|
286 |
+
text = remove_punctuations_on_string(text)
|
287 |
+
text = remove_emojis_on_string(text)
|
288 |
+
text = remove_stopwords_on_string(text)
|
289 |
+
text = lemmatize_on_string(text)
|
290 |
+
|
291 |
+
return text
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Keras>=2.4.3
|
2 |
+
gradio>=1.5.3
|
3 |
+
numpy>=1.19.5
|
4 |
+
nltk~=3.5
|
5 |
+
textblob~=0.15.3
|
6 |
+
tensorflow>=2.4.1
|
tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:945510a17bae3b1875889ac54f16c214eca7dcaf2fd46f9190cb5692e238093f
|
3 |
+
size 11039542
|
web_app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__author__ = "Baishali Dutta"
|
2 |
+
__copyright__ = "Copyright (C) 2021 Baishali Dutta"
|
3 |
+
__license__ = "Apache License 2.0"
|
4 |
+
__version__ = "0.1"
|
5 |
+
|
6 |
+
# -------------------------------------------------------------------------
|
7 |
+
# Import Libraries
|
8 |
+
# -------------------------------------------------------------------------
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
from tensorflow.keras.models import load_model
|
13 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
14 |
+
|
15 |
+
from data_cleaning import clean_text
|
16 |
+
|
17 |
+
# -------------------------------------------------------------------------
|
18 |
+
# Load Existing Model and Tokenizer
|
19 |
+
# -------------------------------------------------------------------------
|
20 |
+
|
21 |
+
# load the trained model
|
22 |
+
rnn_model = load_model("comments_toxicity.h5")
|
23 |
+
|
24 |
+
# load the tokenizer
|
25 |
+
with open("tokenizer.pickle", 'rb') as handle:
|
26 |
+
tokenizer = pickle.load(handle)
|
27 |
+
|
28 |
+
|
29 |
+
# -------------------------------------------------------------------------
|
30 |
+
# Main Application
|
31 |
+
# -------------------------------------------------------------------------
|
32 |
+
|
33 |
+
def make_prediction(input_comment):
|
34 |
+
"""
|
35 |
+
Predicts the toxicity of the specified comment
|
36 |
+
:param input_comment: the comment to be verified
|
37 |
+
"""
|
38 |
+
input_comment = clean_text(input_comment)
|
39 |
+
input_comment = input_comment.split(" ")
|
40 |
+
|
41 |
+
sequences = tokenizer.texts_to_sequences(input_comment)
|
42 |
+
sequences = [[item for sublist in sequences for item in sublist]]
|
43 |
+
|
44 |
+
padded_data = pad_sequences(sequences, maxlen=100)
|
45 |
+
result = rnn_model.predict(padded_data, len(padded_data), verbose=1)
|
46 |
+
|
47 |
+
return \
|
48 |
+
{
|
49 |
+
"Toxic": str(result[0][0]),
|
50 |
+
"Very Toxic": str(result[0][1]),
|
51 |
+
"Obscene": str(result[0][2]),
|
52 |
+
"Threat": str(result[0][3]),
|
53 |
+
"Insult": str(result[0][4]),
|
54 |
+
"Hate": str(result[0][5]),
|
55 |
+
"Neutral": str(result[0][6])
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
comment = gr.inputs.Textbox(lines=17, placeholder="Enter your comment here")
|
60 |
+
|
61 |
+
title = "Comments Toxicity Detection"
|
62 |
+
description = "This application uses a Bidirectional Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) " \
|
63 |
+
"model to predict the inappropriateness of a comment"
|
64 |
+
|
65 |
+
gr.Interface(fn=make_prediction,
|
66 |
+
inputs=comment,
|
67 |
+
outputs="label",
|
68 |
+
title=title,
|
69 |
+
description=description,
|
70 |
+
article="http://raw.githubusercontent.com/baishalidutta/Comments-Toxicity-Detection/gradio/README.md") \
|
71 |
+
.launch(share=True)
|