Spaces:
Build error
Build error
| import pandas as pd | |
| import streamlit as st | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from pre import preprocess_uploaded_file | |
| from jira_integration import ( | |
| render_jira_login, | |
| get_current_sprint, | |
| get_regression_board, | |
| get_sprint_issues, | |
| calculate_points, | |
| create_regression_task, | |
| generate_task_content, | |
| calculate_story_points, | |
| get_project_metadata, | |
| get_field_dependencies, | |
| get_dependent_field_value, | |
| get_boards, | |
| get_functional_area_values, | |
| map_functional_area | |
| ) | |
| from datetime import datetime, timedelta | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| import os | |
| from dotenv import load_dotenv | |
| import json | |
| import logging | |
| load_dotenv() | |
| JIRA_SERVER = os.getenv("JIRA_SERVER") | |
| # Initialize session state variables | |
| if 'filtered_scenarios_df' not in st.session_state: | |
| st.session_state.filtered_scenarios_df = None | |
| if 'task_content' not in st.session_state: | |
| st.session_state.task_content = None | |
| if 'total_story_points' not in st.session_state: | |
| st.session_state.total_story_points = 0 | |
| if 'completed_points' not in st.session_state: | |
| st.session_state.completed_points = 0 | |
| if 'current_page' not in st.session_state: | |
| st.session_state.current_page = "analysis" | |
| if 'task_df' not in st.session_state: | |
| st.session_state.task_df = None | |
| if 'task_environment' not in st.session_state: | |
| st.session_state.task_environment = None | |
| if 'last_task_key' not in st.session_state: | |
| st.session_state.last_task_key = None | |
| if 'last_task_url' not in st.session_state: | |
| st.session_state.last_task_url = None | |
| if 'show_success' not in st.session_state: | |
| st.session_state.show_success = False | |
| # Get logger from jira_integration | |
| logger = logging.getLogger("multiple") | |
| # Function to capture button clicks with manual callback | |
| def handle_task_button_click(summary, description, formatted_env, filtered_df): | |
| logger.info("=== Task button clicked - Starting callback function ===") | |
| try: | |
| logger.info(f"Summary: {summary}") | |
| logger.info(f"Description length: {len(description)}") | |
| logger.info(f"Environment: {formatted_env}") | |
| logger.info(f"DataFrame shape: {filtered_df.shape}") | |
| # Format environment for customer field - simple conversion from RI to R&I | |
| if isinstance(formatted_env, str): | |
| if formatted_env.startswith('RI') and 'FIN' in formatted_env: | |
| # Extract the number between RI and FIN | |
| number = formatted_env[2:formatted_env.index('FIN')] | |
| formatted_env = f"R&I {number} FIN" | |
| elif formatted_env.startswith('RI'): | |
| number = formatted_env[2:] | |
| formatted_env = f"R&I {number}" | |
| # Import here to avoid circular imports | |
| from jira_integration import create_regression_task | |
| logger.info("Imported create_regression_task function") | |
| # Call the actual function | |
| with st.spinner("Creating task in Jira..."): | |
| logger.info("About to call create_regression_task function") | |
| task = create_regression_task( | |
| project_key="RS", | |
| summary=summary, | |
| description=description, | |
| environment=formatted_env, | |
| filtered_scenarios_df=filtered_df | |
| ) | |
| logger.info(f"create_regression_task returned: {task}") | |
| if task: # Store task information in session state | |
| st.session_state.last_task_key = task.key | |
| st.session_state.last_task_url = f"{JIRA_SERVER}/browse/{task.key}" | |
| st.session_state.show_success = True | |
| # Display success message and task details | |
| st.success("✅ Task created successfully!") | |
| st.markdown( | |
| f""" | |
| <div style='padding: 10px; border-radius: 5px; border: 1px solid #90EE90; margin: 10px 0;'> | |
| <h3 style='margin: 0; color: #90EE90;'>Task Details</h3> | |
| <p style='margin: 10px 0;'>Task Key: {task.key}</p> | |
| <a href='{JIRA_SERVER}/browse/{task.key}' target='_blank' | |
| style='background-color: #90EE90; color: black; padding: 5px 10px; | |
| border-radius: 3px; text-decoration: none; display: inline-block;'> | |
| View Task in Jira | |
| </a> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Clear task content | |
| st.session_state.task_content = None | |
| # Add button to create another task | |
| if st.button("Create Another Task", key="create_another"): | |
| # Clear all task-related state | |
| st.session_state.task_content = None | |
| st.session_state.last_task_key = None | |
| st.session_state.last_task_url = None | |
| st.session_state.show_success = False | |
| st.rerun() | |
| logger.info("Task creation process completed successfully") | |
| return True | |
| else: | |
| logger.error("Task creation failed (returned None)") | |
| st.error("❌ Task creation failed. Please check the error messages and try again.") | |
| return False | |
| except Exception as e: | |
| logger.exception(f"Error in handle_task_button_click: {str(e)}") | |
| st.error(f"❌ Error creating task: {str(e)}") | |
| import traceback | |
| error_trace = traceback.format_exc() | |
| logger.error(f"Full traceback: {error_trace}") | |
| st.error(error_trace) | |
| return False | |
| finally: | |
| logger.info("=== Ending handle_task_button_click function ===") | |
| # Define the function to perform analysis | |
| def perform_analysis(uploaded_dataframes): | |
| # Concatenate all dataframes into a single dataframe | |
| combined_data = pd.concat(uploaded_dataframes, ignore_index=True) | |
| # Display debugging information | |
| # st.write("Combined data shape:", combined_data.shape) | |
| # st.write("Unique functional areas in combined data:", combined_data['Functional area'].nunique()) | |
| # st.write("Sample of combined data:", combined_data.head()) | |
| # Display scenarios with status "failed" grouped by functional area | |
| failed_scenarios = combined_data[combined_data['Status'] == 'FAILED'] | |
| passed_scenarios = combined_data[combined_data['Status'] == 'PASSED'] | |
| # Display total count of failures | |
| fail_count = len(failed_scenarios) | |
| st.markdown(f"Failing scenarios Count: {fail_count}") | |
| # Display total count of Passing | |
| pass_count = len(passed_scenarios) | |
| st.markdown(f"Passing scenarios Count: {pass_count}") | |
| # Use radio buttons for selecting status | |
| selected_status = st.radio("Select a status", ['Failed', 'Passed']) | |
| # Determine which scenarios to display based on selected status | |
| if selected_status == 'Failed': | |
| unique_areas = np.append(failed_scenarios['Functional area'].unique(), "All") | |
| selected_scenarios = failed_scenarios | |
| elif selected_status == 'Passed': | |
| unique_areas = np.append(passed_scenarios['Functional area'].unique(), "All") | |
| selected_scenarios = passed_scenarios | |
| else: | |
| selected_scenarios = None | |
| if selected_scenarios is not None: | |
| st.markdown(f"### Scenarios with status '{selected_status}' grouped by functional area:") | |
| # Select a range of functional areas to filter scenarios | |
| selected_functional_areas = st.multiselect("Select functional areas", unique_areas, ["All"]) | |
| if "All" in selected_functional_areas: | |
| filtered_scenarios = selected_scenarios | |
| else: | |
| filtered_scenarios = selected_scenarios[selected_scenarios['Functional area'].isin(selected_functional_areas)] | |
| if not selected_functional_areas: # Check if the list is empty | |
| st.error("Please select at least one functional area.") | |
| else: | |
| # Display count of filtered scenarios | |
| st.write(f"Number of filtered scenarios: {len(filtered_scenarios)}") | |
| # Calculate the average time spent for each functional area | |
| average_time_spent_seconds = filtered_scenarios.groupby('Functional area')['Time spent'].mean().reset_index() | |
| # Convert average time spent from seconds to minutes and seconds format | |
| average_time_spent_seconds['Time spent'] = pd.to_datetime(average_time_spent_seconds['Time spent'], unit='s').dt.strftime('%M:%S') | |
| # Group by functional area and get the start datetime for sorting | |
| start_datetime_group = filtered_scenarios.groupby('Functional area')['Start datetime'].min().reset_index() | |
| end_datetime_group = filtered_scenarios.groupby('Functional area')['End datetime'].max().reset_index() | |
| # Calculate the total time spent for each functional area (difference between end and start datetime) | |
| total_time_spent_seconds = (end_datetime_group['End datetime'] - start_datetime_group['Start datetime']).dt.total_seconds() | |
| # Convert total time spent from seconds to minutes and seconds format | |
| total_time_spent_seconds = pd.to_datetime(total_time_spent_seconds, unit='s').dt.strftime('%M:%S') | |
| # Merge the average_time_spent_seconds with start_datetime_group and end_datetime_group | |
| average_time_spent_seconds = average_time_spent_seconds.merge(start_datetime_group, on='Functional area') | |
| average_time_spent_seconds = average_time_spent_seconds.merge(end_datetime_group, on='Functional area') | |
| average_time_spent_seconds['Total Time Spent'] = total_time_spent_seconds | |
| # Filter scenarios based on selected functional area | |
| if selected_status == 'Failed': | |
| # Define columns in the exact order they appear in the table | |
| columns_to_keep = [ | |
| 'Environment', | |
| 'Functional area', | |
| 'Scenario Name', | |
| 'Error Message', | |
| 'Failed Step', | |
| 'Time spent(m:s)', | |
| 'Start datetime' | |
| ] | |
| # Check if Failed Step column exists | |
| if 'Failed Step' in filtered_scenarios.columns: | |
| grouped_filtered_scenarios = filtered_scenarios[columns_to_keep].copy() | |
| else: | |
| columns_to_keep.remove('Failed Step') | |
| grouped_filtered_scenarios = filtered_scenarios[columns_to_keep].copy() | |
| elif selected_status == 'Passed': | |
| grouped_filtered_scenarios = filtered_scenarios[[ | |
| 'Environment', | |
| 'Functional area', | |
| 'Scenario Name', | |
| 'Time spent(m:s)' | |
| ]].copy() | |
| else: | |
| grouped_filtered_scenarios = None | |
| # Only proceed if we have data | |
| if grouped_filtered_scenarios is not None: | |
| # Reset the index to start from 1 | |
| grouped_filtered_scenarios.index = range(1, len(grouped_filtered_scenarios) + 1) | |
| st.dataframe(grouped_filtered_scenarios) | |
| # Show task creation button if: | |
| # 1. User is authenticated | |
| # 2. Status is Failed | |
| # 3. Exactly one functional area is selected (not "All") | |
| if ('jira_client' in st.session_state and | |
| st.session_state.jira_client and | |
| selected_status == 'Failed' and | |
| len(selected_functional_areas) == 1 and | |
| "All" not in selected_functional_areas): | |
| # If we have a recently created task, show the success message first | |
| if st.session_state.show_success and st.session_state.last_task_key: | |
| st.success("✅ Task created successfully!") | |
| # Display task link in a more prominent way | |
| st.markdown( | |
| f""" | |
| <div style='padding: 10px; border-radius: 5px; border: 1px solid #90EE90; margin: 10px 0;'> | |
| <h3 style='margin: 0; color: #90EE90;'>Task Details</h3> | |
| <p style='margin: 10px 0;'>Task Key: {st.session_state.last_task_key}</p> | |
| <a href='{st.session_state.last_task_url}' target='_blank' | |
| style='background-color: #90EE90; color: black; padding: 5px 10px; | |
| border-radius: 3px; text-decoration: none; display: inline-block;'> | |
| View Task in Jira | |
| </a> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Add a button to create another task | |
| col1, col2, col3 = st.columns([1, 2, 1]) | |
| with col2: | |
| if st.button("Create Another Task", key="create_another", use_container_width=True): | |
| # Clear all task-related state | |
| st.session_state.task_content = None | |
| st.session_state.last_task_key = None | |
| st.session_state.last_task_url = None | |
| st.session_state.show_success = False | |
| st.rerun() | |
| else: | |
| environment = filtered_scenarios['Environment'].iloc[0] | |
| # Create columns for compact layout | |
| col1, col2, col3 = st.columns([1, 2, 1]) | |
| with col2: | |
| if st.button("📝 Log Jira Task", use_container_width=True): | |
| st.write("Debug: Button clicked") # Debug line | |
| # Use the properly structured DataFrame for task creation | |
| task_df = grouped_filtered_scenarios.copy() | |
| expected_columns = [ | |
| 'Environment', | |
| 'Functional area', | |
| 'Scenario Name', | |
| 'Error Message', | |
| 'Failed Step', | |
| 'Time spent(m:s)', | |
| 'Start datetime' | |
| ] | |
| missing_columns = [col for col in expected_columns if col not in task_df.columns] | |
| if missing_columns: | |
| st.error(f"Missing required columns: {', '.join(missing_columns)}") | |
| st.error("Please ensure your data includes all required columns") | |
| return | |
| # Generate task content | |
| summary, description = generate_task_content(task_df) | |
| if summary and description: | |
| # Call the task creation function | |
| handle_task_button_click(summary, description, environment, task_df) | |
| # Check if selected_status is 'Failed' and show bar graph | |
| if selected_status != 'Passed': | |
| # Create and display bar graph of errors by functional area | |
| st.write(f"### Bar graph showing number of '{selected_status}' scenarios in each functional area:") | |
| error_counts = grouped_filtered_scenarios['Functional area'].value_counts() | |
| # Only create the graph if there are errors to display | |
| if not error_counts.empty: | |
| plt.figure(figsize=(12, 10)) | |
| bars = plt.bar(error_counts.index, error_counts.values) | |
| plt.xlabel('Functional Area') | |
| plt.ylabel('Number of Failures') | |
| plt.title(f"Number of '{selected_status}' scenarios by Functional Area") | |
| plt.xticks(rotation=45, ha='right', fontsize=10) | |
| # Set y-axis limits and ticks for consistent interval of 1 | |
| y_max = max(error_counts.values) + 1 | |
| plt.ylim(0, y_max) | |
| plt.yticks(range(0, y_max, 1), fontsize=10) | |
| # Display individual numbers on y-axis | |
| for bar in bars: | |
| height = bar.get_height() | |
| plt.text(bar.get_x() + bar.get_width() / 2, height, str(int(height)), | |
| ha='center', va='bottom') # Reduce font size of individual numbers | |
| plt.tight_layout() # Add this line to adjust layout | |
| st.pyplot(plt) | |
| else: | |
| st.info(f"No '{selected_status}' scenarios found to display in the graph.") | |
| pass | |
| def display_story_points_stats(force_refresh=False): | |
| """Display story points statistics from current sprint""" | |
| if not st.session_state.jira_client: | |
| return | |
| try: | |
| with st.spinner("Fetching sprint data..."): | |
| # Get regression board | |
| board = get_regression_board("RS") | |
| if not board: | |
| return | |
| # Get current sprint | |
| sprint = get_current_sprint(board['id']) | |
| if not sprint: | |
| return | |
| # Get sprint issues | |
| issues = get_sprint_issues(board['id'], sprint.id, board['estimation_field']) | |
| if not issues: | |
| return | |
| # Calculate points | |
| issues_data, total_points, completed_points, in_progress_points = calculate_points(issues, board['estimation_field']) | |
| # Update session state | |
| st.session_state.total_story_points = total_points | |
| st.session_state.completed_points = completed_points | |
| # Create compact metrics display | |
| metrics_container = st.container() | |
| with metrics_container: | |
| # Show sprint info | |
| st.info(f"Current Sprint: {sprint.name}") | |
| # Show metrics in a compact format | |
| cols = st.columns(4) | |
| with cols[0]: | |
| st.metric("Total", f"{total_points:.1f}") | |
| with cols[1]: | |
| st.metric("Done", f"{completed_points:.1f}") | |
| with cols[2]: | |
| st.metric("In Progress", f"{in_progress_points:.1f}") | |
| with cols[3]: | |
| completion_rate = (completed_points / total_points * 100) if total_points > 0 else 0 | |
| st.metric("Complete", f"{completion_rate:.1f}%") | |
| # Show progress bar | |
| progress = completed_points / total_points if total_points > 0 else 0 | |
| st.progress(progress) | |
| # Add refresh button | |
| if st.button("🔄 Refresh", key="refresh_stats", use_container_width=True): | |
| st.session_state.last_refresh = datetime.now() | |
| return | |
| except Exception as e: | |
| st.error(f"Error updating story points: {str(e)}") | |
| def show_task_creation_section(filtered_df, environment): | |
| """Display the task creation section with detailed functional area mapping information.""" | |
| if "Functional area" in filtered_df.columns and len(filtered_df) > 0: | |
| functional_areas = filtered_df["Functional area"].unique().tolist() | |
| functional_area = functional_areas[0] if functional_areas else None | |
| logger.debug(f"Found functional areas: {functional_areas}") | |
| # Get project metadata to access allowed values | |
| metadata = get_project_metadata("RS") | |
| if metadata: | |
| # Create expandable section for field structure | |
| with st.expander("Functional Area Field Structure", expanded=False): | |
| func_field = metadata['all_fields'].get('customfield_13100', {}) | |
| if func_field and 'allowedValues' in func_field: | |
| st.write("Available parent-child mappings:") | |
| for parent in func_field['allowedValues']: | |
| if isinstance(parent, dict): | |
| parent_value = parent.get('value', 'Unknown') | |
| st.markdown(f"**Parent: {parent_value}**") | |
| if 'cascadingOptions' in parent: | |
| child_values = [child.get('value') for child in parent['cascadingOptions'] if child.get('value')] | |
| st.write("Child options:") | |
| for child in sorted(child_values): | |
| st.write(f" • {child}") | |
| st.write("") | |
| # Display current functional area and mapping attempt | |
| st.subheader("Functional Area Mapping") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown("**Input Functional Area:**") | |
| st.info(functional_area) | |
| st.markdown("**Split Parts:**") | |
| parts = functional_area.split(' - ') | |
| for i, part in enumerate(parts, 1): | |
| st.write(f"{i}. {part}") | |
| with col2: | |
| # Try to map the functional area | |
| parent, child = map_functional_area(functional_area, metadata) | |
| st.markdown("**Mapped Values:**") | |
| st.success(f"Parent: {parent}") | |
| st.success(f"Child: {child}") | |
| # Show normalized form | |
| st.markdown("**Normalized Form:**") | |
| norm_area = functional_area.lower().replace(' ', '-') | |
| st.info(norm_area) | |
| # Add warning if using default mapping | |
| if parent == "R&I" and child == "Data Exchange" and functional_area.lower() != "data exchange": | |
| st.warning(""" | |
| ⚠️ Using default mapping (R&I/Data Exchange). This might not be the best match. | |
| Please check the 'Functional Area Field Structure' above for available values. | |
| """) | |
| else: | |
| logger.warning("No functional area found in data") | |
| st.warning("No functional area information found in the data") | |
| # Create task button | |
| if st.button("Create Task", key="create_task_button"): | |
| handle_task_button_click(filtered_df, environment) | |
| def multiple_main(): | |
| # Initialize session state variables | |
| if 'current_page' not in st.session_state: | |
| st.session_state.current_page = "upload" | |
| if 'task_df' not in st.session_state: | |
| st.session_state.task_df = None | |
| if 'selected_files' not in st.session_state: | |
| st.session_state.selected_files = [] | |
| if 'uploaded_files' not in st.session_state: | |
| st.session_state.uploaded_files = [] | |
| if 'filtered_scenarios_df' not in st.session_state: | |
| st.session_state.filtered_scenarios_df = None | |
| if 'show_success' not in st.session_state: | |
| st.session_state.show_success = False | |
| if 'jira_server' not in st.session_state: | |
| st.session_state.jira_server = JIRA_SERVER | |
| # Initialize session state for sprint data if not exists | |
| if 'sprint_data_initialized' not in st.session_state: | |
| st.session_state.sprint_data_initialized = False | |
| # Add Jira login to sidebar (only once) | |
| with st.sidebar: | |
| st.subheader("Jira Integration (Optional)") | |
| # Only render login if not already authenticated | |
| if 'is_authenticated' not in st.session_state: | |
| st.session_state.is_authenticated = render_jira_login() | |
| else: | |
| # Just display the status without re-rendering the login | |
| if st.session_state.is_authenticated: | |
| st.success("Connected to Jira") | |
| else: | |
| # Allow re-login if not authenticated | |
| st.session_state.is_authenticated = render_jira_login() | |
| # Only show story points in sidebar if authenticated | |
| if st.session_state.is_authenticated and st.session_state.jira_client: | |
| st.markdown("---") | |
| st.subheader("Sprint Progress") | |
| # Only fetch sprint data once or when refresh is clicked | |
| if not st.session_state.sprint_data_initialized: | |
| display_story_points_stats(force_refresh=True) | |
| st.session_state.sprint_data_initialized = True | |
| else: | |
| display_story_points_stats(force_refresh=False) | |
| # Initialize session state for uploaded data | |
| if 'uploaded_data' not in st.session_state: | |
| st.session_state.uploaded_data = None | |
| if 'last_refresh' not in st.session_state: | |
| st.session_state.last_refresh = None | |
| # Check if we're in task creation mode | |
| if st.session_state.current_page == "create_task" and st.session_state.task_df is not None: | |
| # Add a back button | |
| if st.button("⬅️ Back to Analysis"): | |
| st.session_state.current_page = "analysis" | |
| st.rerun() | |
| return | |
| # Show task creation section | |
| show_task_creation_section(st.session_state.task_df, st.session_state.task_environment) | |
| return | |
| # Main analysis page | |
| uploaded_files = st.file_uploader("Upload CSV or Excel files", | |
| type=['csv', 'xlsx'], | |
| accept_multiple_files=True) | |
| # Process uploaded files and store in session state | |
| if uploaded_files: | |
| all_data = [] | |
| for file in uploaded_files: | |
| try: | |
| df = preprocess_uploaded_file(file) | |
| all_data.append(df) | |
| except Exception as e: | |
| st.error(f"Error processing {file.name}: {str(e)}") | |
| if all_data: | |
| # Store the processed data in session state | |
| st.session_state.uploaded_data = all_data | |
| # Use data from session state for analysis | |
| if st.session_state.uploaded_data: | |
| # Perform analysis for uploaded data | |
| perform_analysis(st.session_state.uploaded_data) | |
| # Get combined data for Jira integration | |
| combined_df = pd.concat(st.session_state.uploaded_data, ignore_index=True) | |
| else: | |
| st.write("Please upload at least one file.") | |
| if __name__ == "__main__": | |
| st.set_page_config(layout="wide") | |
| multiple_main() | |