Spaces:
Sleeping
Sleeping
Commit
·
7f6e787
1
Parent(s):
aad0805
Create multiple.py
Browse files- multiple.py +136 -0
multiple.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from pre import preprocess_uploaded_file
|
| 6 |
+
|
| 7 |
+
# Define the function to perform analysis
|
| 8 |
+
def perform_analysis(uploaded_dataframes):
|
| 9 |
+
# Concatenate all dataframes into a single dataframe
|
| 10 |
+
combined_data = pd.concat(uploaded_dataframes, ignore_index=True)
|
| 11 |
+
|
| 12 |
+
# Display scenarios with status "failed" grouped by functional area
|
| 13 |
+
failed_scenarios = combined_data[combined_data['Status'] == 'FAILED']
|
| 14 |
+
passed_scenarios = combined_data[combined_data['Status'] == 'PASSED']
|
| 15 |
+
# Display total count of failures
|
| 16 |
+
fail_count = len(failed_scenarios)
|
| 17 |
+
st.markdown(f"Failing scenarios Count: {fail_count}")
|
| 18 |
+
# Display total count of Passing
|
| 19 |
+
pass_count = len(passed_scenarios)
|
| 20 |
+
st.markdown(f"Passing scenarios Count: {pass_count}")
|
| 21 |
+
# Use radio buttons for selecting status
|
| 22 |
+
selected_status = st.radio("Select a status", ['Failed', 'Passed'])
|
| 23 |
+
# Determine which scenarios to display based on selected status
|
| 24 |
+
if selected_status == 'Failed':
|
| 25 |
+
unique_areas = np.append(failed_scenarios['Functional area'].unique(), "All")
|
| 26 |
+
selected_scenarios = failed_scenarios
|
| 27 |
+
elif selected_status == 'Passed':
|
| 28 |
+
unique_areas = np.append(passed_scenarios['Functional area'].unique(), "All")
|
| 29 |
+
selected_scenarios = passed_scenarios
|
| 30 |
+
else:
|
| 31 |
+
selected_scenarios = None
|
| 32 |
+
|
| 33 |
+
if selected_scenarios is not None:
|
| 34 |
+
# st.write(f"Scenarios with status '{selected_status}' grouped by functional area:")
|
| 35 |
+
st.markdown(f"### Scenarios with status '{selected_status}' grouped by functional area:")
|
| 36 |
+
|
| 37 |
+
# Select a range of functional areas to filter scenarios
|
| 38 |
+
selected_functional_areas = st.multiselect("Select functional areas", unique_areas, ["All"])
|
| 39 |
+
|
| 40 |
+
if "All" in selected_functional_areas:
|
| 41 |
+
filtered_scenarios = selected_scenarios
|
| 42 |
+
else:
|
| 43 |
+
filtered_scenarios = selected_scenarios[selected_scenarios['Functional area'].isin(selected_functional_areas)]
|
| 44 |
+
|
| 45 |
+
if not selected_functional_areas: # Check if the list is empty
|
| 46 |
+
st.error("Please select at least one functional area.")
|
| 47 |
+
else:
|
| 48 |
+
# Calculate the average time spent for each functional area
|
| 49 |
+
average_time_spent_seconds = filtered_scenarios.groupby('Functional area')['Time spent'].mean().reset_index()
|
| 50 |
+
# Convert average time spent from seconds to minutes and seconds format
|
| 51 |
+
average_time_spent_seconds['Time spent'] = pd.to_datetime(average_time_spent_seconds['Time spent'], unit='s').dt.strftime('%M:%S')
|
| 52 |
+
# Group by functional area and get the start datetime for sorting
|
| 53 |
+
start_datetime_group = filtered_scenarios.groupby('Functional area')['Start datetime'].min().reset_index()
|
| 54 |
+
# Merge average_time_spent_seconds and start_datetime_group
|
| 55 |
+
average_time_spent_seconds = average_time_spent_seconds.merge(start_datetime_group, on='Functional area')
|
| 56 |
+
# Filter scenarios based on selected functional area
|
| 57 |
+
if selected_status == 'Failed':
|
| 58 |
+
grouped_filtered_scenarios = filtered_scenarios.groupby('Environment')[['Functional area', 'Scenario name', 'Error message','Time spent(m:s)']].apply(lambda x: x.reset_index(drop=True))
|
| 59 |
+
elif selected_status == 'Passed':
|
| 60 |
+
grouped_filtered_scenarios = filtered_scenarios.groupby('Functional area')[['Scenario name', 'Time spent(m:s)']].apply(lambda x: x.reset_index(drop=True))
|
| 61 |
+
else:
|
| 62 |
+
grouped_filtered_scenarios = None
|
| 63 |
+
grouped_filtered_scenarios.reset_index(inplace=True)
|
| 64 |
+
grouped_filtered_scenarios.drop(columns=['level_1'], inplace=True)
|
| 65 |
+
# grouped_filtered_scenarios['level_1'] = index
|
| 66 |
+
grouped_filtered_scenarios.index = grouped_filtered_scenarios.index + 1
|
| 67 |
+
st.dataframe(grouped_filtered_scenarios)
|
| 68 |
+
# Sort the average time spent table by start datetime
|
| 69 |
+
average_time_spent_seconds = average_time_spent_seconds.sort_values(by='Start datetime')
|
| 70 |
+
|
| 71 |
+
# Display average time spent on each functional area in a table
|
| 72 |
+
st.markdown("### Average Time Spent on Each Functional Area")
|
| 73 |
+
average_time_spent_seconds.index = average_time_spent_seconds.index + 1
|
| 74 |
+
st.dataframe(average_time_spent_seconds)
|
| 75 |
+
|
| 76 |
+
# Check if selected_status is 'Failed' and grouped_filtered_scenarios length is less than or equal to 400
|
| 77 |
+
if selected_status != 'Passed':
|
| 78 |
+
# Create and display bar graph of errors by functional area
|
| 79 |
+
st.write(f"### Bar graph showing number of '{selected_status}' scenarios in each functional area:")
|
| 80 |
+
error_counts = grouped_filtered_scenarios['Functional area'].value_counts()
|
| 81 |
+
plt.figure(figsize=(12, 10))
|
| 82 |
+
bars = plt.bar(error_counts.index, error_counts.values)
|
| 83 |
+
plt.xlabel('Functional Area')
|
| 84 |
+
plt.ylabel('Number of Failures')
|
| 85 |
+
plt.title(f"Number of '{selected_status}' scenarios by Functional Area")
|
| 86 |
+
plt.xticks(rotation=45, ha='right', fontsize=10)
|
| 87 |
+
# Set y-axis limits and ticks for consistent interval of 1
|
| 88 |
+
y_max = max(error_counts.values) + 1
|
| 89 |
+
plt.ylim(0, y_max)
|
| 90 |
+
plt.yticks(range(0, y_max, 1), fontsize=10)
|
| 91 |
+
|
| 92 |
+
# Display individual numbers on y-axis
|
| 93 |
+
for bar in bars:
|
| 94 |
+
height = bar.get_height()
|
| 95 |
+
plt.text(bar.get_x() + bar.get_width() / 2, height, str(int(height)),
|
| 96 |
+
ha='center', va='bottom') # Reduce font size of individual numbers
|
| 97 |
+
|
| 98 |
+
plt.tight_layout() # Add this line to adjust layout
|
| 99 |
+
st.pyplot(plt)
|
| 100 |
+
pass
|
| 101 |
+
|
| 102 |
+
def multiple_main():
|
| 103 |
+
|
| 104 |
+
# Get the number of environments from the user
|
| 105 |
+
num_environments = st.number_input("Enter the number of environments", min_value=1, value=1, step=1)
|
| 106 |
+
|
| 107 |
+
# Initialize list to store uploaded dataframes
|
| 108 |
+
uploaded_dataframes = []
|
| 109 |
+
|
| 110 |
+
# Loop through the number of environments and create file uploaders
|
| 111 |
+
for i in range(num_environments):
|
| 112 |
+
uploaded_files = st.file_uploader(f"Upload CSV files for Environment {i + 1}", type="csv", accept_multiple_files=True)
|
| 113 |
+
|
| 114 |
+
for uploaded_file in uploaded_files:
|
| 115 |
+
# Preprocess the uploaded CSV file
|
| 116 |
+
data = preprocess_uploaded_file(uploaded_file)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# Extract environment name from filename
|
| 120 |
+
filename = uploaded_file.name
|
| 121 |
+
environment = filename.split('_Puppeteer')[0]
|
| 122 |
+
|
| 123 |
+
# Add environment column to the dataframe
|
| 124 |
+
data['Environment'] = environment
|
| 125 |
+
|
| 126 |
+
# Append the dataframe to the list
|
| 127 |
+
uploaded_dataframes.append(data)
|
| 128 |
+
|
| 129 |
+
# Check if any files were uploaded
|
| 130 |
+
if uploaded_dataframes:
|
| 131 |
+
# Perform analysis for uploaded data
|
| 132 |
+
perform_analysis(uploaded_dataframes)
|
| 133 |
+
else:
|
| 134 |
+
st.write("Please upload at least one CSV file.")
|
| 135 |
+
|
| 136 |
+
pass
|