File size: 5,099 Bytes
413d4d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
from torch import nn
from torch import einsum
from torch.nn import functional as F

class VectorQuantize(nn.Module):
    def __init__(self, 
                    hidden_dim,
                    embedding_dim,
                    n_embed,
                    commitment_cost=1):
        super().__init__()
        
        self.hidden_dim = hidden_dim
        self.embedding_dim = embedding_dim
        self.n_embed = n_embed
        self.commitment_cost = commitment_cost

        self.proj = nn.Conv2d(hidden_dim, embedding_dim, 1)
        self.embed = nn.Embedding(n_embed, embedding_dim)
        self.embed.weight.data.uniform_(-1. / n_embed, 1. / n_embed)

    def forward(self, z):
        B, C, H, W = z.shape

        z_e = self.proj(z)
        z_e = z_e.permute(0, 2, 3, 1) # (B, H, W, C)
        flatten = z_e.reshape(-1, self.embedding_dim)

        dist = (
            flatten.pow(2).sum(1, keepdim=True)
            - 2 * flatten @ self.embed.weight.t()
            + self.embed.weight.pow(2).sum(1, keepdim=True).t()
        )
        _, embed_ind = (-dist).max(1)
        embed_ind = embed_ind.view(B, H, W)

        z_q = self.embed_code(embed_ind)
        diff = self.commitment_cost * (z_q.detach() - z_e).pow(2).mean() \
                + (z_q - z_e.detach()).pow(2).mean()

        z_q = z_e + (z_q - z_e).detach()
        return z_q, diff, embed_ind

    def embed_code(self, embed_id):
        return F.embedding(embed_id, self.embed.weight)
    

class VectorQuantizeEMA(nn.Module):
    def __init__(self,
                    hidden_dim,
                    embedding_dim,
                    n_embed,
                    commitment_cost=1,
                    decay=0.99,
                    eps=1e-5,
                    pre_proj=True,
                    training_loc=True):
        super().__init__()
        
        self.hidden_dim = hidden_dim
        self.embedding_dim = embedding_dim
        self.n_embed = n_embed
        self.commitment_cost = commitment_cost
        self.training_loc = training_loc
        
        self.pre_proj = pre_proj
        if self.pre_proj:
            self.proj = nn.Conv2d(hidden_dim, embedding_dim, 1)
        self.embed = nn.Embedding(n_embed, embedding_dim)
        self.embed.weight.data.uniform_(-1. / n_embed, 1. / n_embed)
        
        self.register_buffer("cluster_size", torch.zeros(n_embed))
        self.register_buffer("embed_avg", self.embed.weight.data.clone())
        
        self.decay = decay
        self.eps = eps
        
    def forward(self, z):
        B, C, H, W = z.shape
        
        if self.pre_proj:
            z_e = self.proj(z)
        else:
            z_e = z
        z_e = z_e.permute(0, 2, 3, 1) # (B, H, W, C)
        flatten = z_e.reshape(-1, self.embedding_dim)

        dist = (
            flatten.pow(2).sum(1, keepdim=True)
            - 2 * flatten @ self.embed.weight.t()
            + self.embed.weight.pow(2).sum(1, keepdim=True).t()
        )
        _, embed_ind = (-dist).max(1)
        embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
        embed_ind = embed_ind.view(B, H, W)

        z_q = self.embed_code(embed_ind)
        
        diff = self.commitment_cost * (z_q.detach() - z_e).pow(2).mean()

        z_q = z_e + (z_q - z_e).detach()
        return z_q, diff, embed_ind

    def embed_code(self, embed_id):
        return F.embedding(embed_id, self.embed.weight)
 

class GumbelQuantize(nn.Module):
    def __init__(self,
                    hidden_dim,
                    embedding_dim,
                    n_embed,
                    commitment_cost=1,
                    straight_through=True,
                    kl_weight=5e-4,
                    temp_init=1.,
                    eps=1e-5):
        super().__init__()
        
        self.hidden_dim = hidden_dim
        self.embedding_dim = embedding_dim
        self.n_embed = n_embed
        self.commitment_cost = commitment_cost
        
        self.kl_weight = kl_weight
        self.temperature = temp_init
        self.eps = eps
        
        self.proj = nn.Conv2d(hidden_dim, n_embed, 1)
        self.embed = nn.Embedding(n_embed, embedding_dim)
        self.embed.weight.data.uniform_(-1. / n_embed, 1. / n_embed)
        
        self.straight_through = straight_through
        
    def forward(self, z, temp=None):
        hard = self.straight_through if self.training else True
        temp = self.temperature if temp is None else temp
        
        B, C, H, W = z.shape
        
        z_e = self.proj(z)
        
        soft_one_hot = F.gumbel_softmax(z_e, tau=temp, dim=1, hard=hard)
        z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
        
        qy = F.softmax(z_e, dim=1)
        diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + self.eps), dim=1).mean()
        
        embed_ind = soft_one_hot.argmax(dim=1)
        z_q = z_q.permute(0, 2, 3, 1)
        return z_q, diff, embed_ind
        
    def embed_code(self, embed_id):
        return F.embedding(embed_id, self.embed.weight)