Spaces:
Runtime error
Runtime error
File size: 7,065 Bytes
5d32408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# General
import os
from os.path import join as opj
import datetime
import torch
from einops import rearrange, repeat
# Utilities
from videogen_hub.pipelines.streamingt2v.inference_utils import *
from modelscope.outputs import OutputKeys
import imageio
from PIL import Image
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as transforms
from diffusers.utils import load_image
transform = transforms.Compose([transforms.PILToTensor()])
def ms_short_gen(prompt, ms_model, inference_generator, t=50, device="cuda"):
frames = ms_model(
prompt,
num_inference_steps=t,
generator=inference_generator,
eta=1.0,
height=256,
width=256,
latents=None,
).frames
frames = torch.stack([torch.from_numpy(frame) for frame in frames])
frames = frames.to(device).to(torch.float32)
return rearrange(frames[0], "F W H C -> F C W H")
def ad_short_gen(prompt, ad_model, inference_generator, t=25, device="cuda"):
frames = ad_model(
prompt,
negative_prompt="bad quality, worse quality",
num_frames=16,
num_inference_steps=t,
generator=inference_generator,
guidance_scale=7.5,
).frames[0]
frames = torch.stack([transform(frame) for frame in frames])
frames = frames.to(device).to(torch.float32)
frames = F.interpolate(frames, size=256)
frames = frames / 255.0
return frames
def sdxl_image_gen(prompt, sdxl_model):
image = sdxl_model(prompt=prompt).images[0]
return image
def svd_short_gen(
image, prompt, svd_model, sdxl_model, inference_generator, t=25, device="cuda"
):
if image is None or image == "":
image = sdxl_image_gen(prompt, sdxl_model)
image = image.resize((576, 576))
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
elif type(image) is str:
image = load_image(image)
image = resize_and_keep(image)
image = center_crop(image)
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
else:
image = Image.fromarray(np.uint8(image))
image = resize_and_keep(image)
image = center_crop(image)
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
frames = svd_model(
image, decode_chunk_size=8, generator=inference_generator
).frames[0]
frames = torch.stack([transform(frame) for frame in frames])
frames = frames.to(device).to(torch.float32)
frames = frames[:16, :, :, 224:-224]
frames = F.interpolate(frames, size=256)
frames = frames / 255.0
return frames
def stream_long_gen(
prompt,
short_video,
n_autoreg_gen,
negative_prompt,
seed,
t,
image_guidance,
result_file_stem,
stream_cli,
stream_model,
):
trainer = stream_cli.trainer
trainer.limit_predict_batches = 1
trainer.predict_cfg = {
"predict_dir": stream_cli.config["result_fol"].as_posix(),
"result_file_stem": result_file_stem,
"prompt": prompt,
"video": short_video,
"seed": seed,
"num_inference_steps": t,
"guidance_scale": image_guidance,
"n_autoregressive_generations": n_autoreg_gen,
}
stream_model.inference_params.negative_prompt = negative_prompt
trainer.predict(model=stream_model, datamodule=stream_cli.datamodule)
def video2video(prompt, video, where_to_log, cfg_v2v, model_v2v, square=True):
downscale = cfg_v2v["downscale"]
upscale_size = cfg_v2v["upscale_size"]
pad = cfg_v2v["pad"]
now = datetime.datetime.now()
now = str(now.time()).replace(":", "_").replace(".", "_")
name = prompt[:100].replace(" ", "_") + "_" + now
enhanced_video_mp4 = opj(where_to_log, name + "_enhanced.mp4")
video_frames = imageio.mimread(video)
h, w, _ = video_frames[0].shape
# Downscale video, then resize to fit the upscale size
video = [
Image.fromarray(frame).resize((w // downscale, h // downscale))
for frame in video_frames
]
video = [resize_to_fit(frame, upscale_size) for frame in video]
if pad:
video = [pad_to_fit(frame, upscale_size) for frame in video]
# video = [np.array(frame) for frame in video]
imageio.mimsave(opj(where_to_log, "temp_" + now + ".mp4"), video, fps=8)
p_input = {
"video_path": opj(where_to_log, "temp_" + now + ".mp4"),
"text": prompt,
"positive_prompt": prompt,
"total_noise_levels": 600,
}
model_v2v(p_input, output_video=enhanced_video_mp4)[OutputKeys.OUTPUT_VIDEO]
# Remove padding
video_frames = imageio.mimread(enhanced_video_mp4)
video_frames_square = []
for frame in video_frames:
frame = frame[:, 280:-280, :]
video_frames_square.append(frame)
imageio.mimsave(enhanced_video_mp4, video_frames_square)
return enhanced_video_mp4
# The main functionality for video to video
def video2video_randomized(
prompt,
video,
where_to_log,
cfg_v2v,
model_v2v,
square=True,
chunk_size=24,
overlap_size=8,
negative_prompt="",
):
downscale = cfg_v2v["downscale"]
upscale_size = cfg_v2v["upscale_size"]
pad = cfg_v2v["pad"]
now = datetime.datetime.now()
name = (
prompt[:100].replace(" ", "_")
+ "_"
+ str(now.time()).replace(":", "_").replace(".", "_")
)
enhanced_video_mp4 = opj(where_to_log, name + "_enhanced.mp4")
video_frames = imageio.mimread(video)
h, w, _ = video_frames[0].shape
n_chunks = (len(video_frames) - overlap_size) // (chunk_size - overlap_size)
trim_length = n_chunks * (chunk_size - overlap_size) + overlap_size
if trim_length < chunk_size:
raise ValueError(
f"Chunk size [{chunk_size}] cannot be larger than the number of frames in the video [{len(video_frames)}], please provide smaller chunk size"
)
if trim_length < len(video_frames):
print(
"Video cannot be processed with chunk size {chunk_size} and overlap size {overlap_size}, "
"trimming it to length {trim_length} to be able to process it"
)
video_frames = video_frames[:trim_length]
model_v2v.chunk_size = chunk_size
model_v2v.overlap_size = overlap_size
# Downscale video, then resize to fit the upscale size
video = [
Image.fromarray(frame).resize((w // downscale, h // downscale))
for frame in video_frames
]
video = [resize_to_fit(frame, upscale_size) for frame in video]
if pad:
video = [pad_to_fit(frame, upscale_size) for frame in video]
video = list(map(np.array, video))
imageio.mimsave(opj(where_to_log, "temp.mp4"), video, fps=8)
p_input = {
"video_path": opj(where_to_log, "temp.mp4"),
"text": prompt,
"positive_prompt": "",
"negative_prompt": negative_prompt,
"total_noise_levels": 600,
}
output_video_path = model_v2v(p_input, output_video=enhanced_video_mp4)[
OutputKeys.OUTPUT_VIDEO
]
return enhanced_video_mp4
|