Spaces:
Runtime error
Runtime error
File size: 5,008 Bytes
5d32408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Adapted from https://github.com/luosiallen/latent-consistency-model
from __future__ import annotations
import os
import random
import numpy as np
from .pipeline.t2v_turbo_ms_pipeline import T2VTurboMSPipeline
from .scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from .utils.common_utils import set_torch_2_attn
try:
import intel_extension_for_pytorch as ipex
except:
pass
from transformers import CLIPTokenizer, CLIPTextModel
from .model_scope.unet_3d_condition import UNet3DConditionModel
from .utils.lora import collapse_lora, monkeypatch_remove_lora
from .utils.lora_handler import LoraHandler
import torch
from diffusers.models import AutoencoderKL
DESCRIPTION = """# T2V-Turbo π
We provide T2V-Turbo (MS) distilled from [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b/) with the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [ViCLIP](https://huggingface.co/OpenGVLab/ViCLIP).
You can download the the models from [here](https://huggingface.co/jiachenli-ucsb/T2V-Turbo-MS). Check out our [Project page](https://t2v-turbo.github.io) π
"""
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA π</p>"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU π€</p>"
else:
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
"""
Operation System Options:
If you are using MacOS, please set the following (device="mps") ;
If you are using Linux & Windows with Nvidia GPU, please set the device="cuda";
If you are using Linux & Windows with Intel Arc GPU, please set the device="xpu";
"""
# device = "mps" # MacOS
# device = "xpu" # Intel Arc GPU
device = "cuda" # Linux & Windows
"""
DTYPE Options:
To reduce GPU memory you can set "DTYPE=torch.float16",
but image quality might be compromised
"""
DTYPE = (
torch.float16
) # torch.float16 works as well, but pictures seem to be a bit worse
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
class T2VTurboMSPipeline1:
def __init__(self, device, unet_dir, base_model_dir):
pretrained_model_path = base_model_dir
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_path, subfolder="tokenizer"
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_path, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
teacher_unet = UNet3DConditionModel.from_pretrained(
pretrained_model_path, subfolder="unet"
)
time_cond_proj_dim = 256
unet = UNet3DConditionModel.from_config(
teacher_unet.config, time_cond_proj_dim=time_cond_proj_dim
)
# load teacher_unet weights into unet
unet.load_state_dict(teacher_unet.state_dict(), strict=False)
del teacher_unet
set_torch_2_attn(unet)
use_unet_lora = True
lora_manager = LoraHandler(
version="cloneofsimo",
use_unet_lora=use_unet_lora,
save_for_webui=True,
)
lora_manager.add_lora_to_model(
use_unet_lora,
unet,
lora_manager.unet_replace_modules,
lora_path=unet_dir,
dropout=0.1,
r=32,
)
collapse_lora(unet, lora_manager.unet_replace_modules)
monkeypatch_remove_lora(unet)
unet.eval()
noise_scheduler = T2VTurboScheduler()
self.pipeline = T2VTurboMSPipeline(
unet=unet,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=noise_scheduler,
)
self.pipeline.to(device)
def inference(
self,
prompt: str,
height: int = 320,
width: int = 512,
seed: int = 0,
guidance_scale: float = 7.5,
num_inference_steps: int = 4,
num_frames: int = 16,
fps: int = 16,
randomize_seed: bool = False,
param_dtype="torch.float16"
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
self.pipeline.to(
torch_device=device,
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
)
result = self.pipeline(
prompt=prompt,
height=height,
width=width,
frames=num_frames,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
)
return result
|