Spaces:
Runtime error
Runtime error
# -*- encoding: utf-8 -*- | |
""" | |
@File : cogvideo_pipeline.py | |
@Time : 2022/07/15 11:24:56 | |
@Author : Wenyi Hong | |
@Version : 1.0 | |
@Contact : [email protected] | |
""" | |
# here put the import lib | |
import os | |
import sys | |
import torch | |
import argparse | |
import time | |
from torchvision.utils import save_image | |
import stat | |
from videogen_hub.depend.icetk import icetk as tokenizer | |
import logging, sys | |
import torch.distributed as dist | |
tokenizer.add_special_tokens( | |
["<start_of_image>", "<start_of_english>", "<start_of_chinese>"] | |
) | |
from SwissArmyTransformer import get_args | |
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders | |
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy | |
from SwissArmyTransformer.generation.utils import ( | |
timed_name, | |
save_multiple_images, | |
generate_continually, | |
) | |
from SwissArmyTransformer.resources import auto_create | |
from .models.cogvideo_cache_model import CogVideoCacheModel | |
from .coglm_strategy import CoglmStrategy | |
def get_masks_and_position_ids_stage1(data, textlen, framelen): | |
# Extract batch size and sequence length. | |
tokens = data | |
seq_length = len(data[0]) | |
# Attention mask (lower triangular). | |
attention_mask = torch.ones( | |
(1, textlen + framelen, textlen + framelen), device=data.device | |
) | |
attention_mask[:, :textlen, textlen:] = 0 | |
attention_mask[:, textlen:, textlen:].tril_() | |
attention_mask.unsqueeze_(1) | |
# Unaligned version | |
position_ids = torch.zeros(seq_length, dtype=torch.long, device=data.device) | |
torch.arange( | |
textlen, out=position_ids[:textlen], dtype=torch.long, device=data.device | |
) | |
torch.arange( | |
512, | |
512 + seq_length - textlen, | |
out=position_ids[textlen:], | |
dtype=torch.long, | |
device=data.device, | |
) | |
position_ids = position_ids.unsqueeze(0) | |
return tokens, attention_mask, position_ids | |
def get_masks_and_position_ids_stage2(data, textlen, framelen): | |
# Extract batch size and sequence length. | |
tokens = data | |
seq_length = len(data[0]) | |
# Attention mask (lower triangular). | |
attention_mask = torch.ones( | |
(1, textlen + framelen, textlen + framelen), device=data.device | |
) | |
attention_mask[:, :textlen, textlen:] = 0 | |
attention_mask[:, textlen:, textlen:].tril_() | |
attention_mask.unsqueeze_(1) | |
# Unaligned version | |
position_ids = torch.zeros(seq_length, dtype=torch.long, device=data.device) | |
torch.arange( | |
textlen, out=position_ids[:textlen], dtype=torch.long, device=data.device | |
) | |
frame_num = (seq_length - textlen) // framelen | |
assert frame_num == 5 | |
torch.arange( | |
512, | |
512 + framelen, | |
out=position_ids[textlen : textlen + framelen], | |
dtype=torch.long, | |
device=data.device, | |
) | |
torch.arange( | |
512 + framelen * 2, | |
512 + framelen * 3, | |
out=position_ids[textlen + framelen : textlen + framelen * 2], | |
dtype=torch.long, | |
device=data.device, | |
) | |
torch.arange( | |
512 + framelen * (frame_num - 1), | |
512 + framelen * frame_num, | |
out=position_ids[textlen + framelen * 2 : textlen + framelen * 3], | |
dtype=torch.long, | |
device=data.device, | |
) | |
torch.arange( | |
512 + framelen * 1, | |
512 + framelen * 2, | |
out=position_ids[textlen + framelen * 3 : textlen + framelen * 4], | |
dtype=torch.long, | |
device=data.device, | |
) | |
torch.arange( | |
512 + framelen * 3, | |
512 + framelen * 4, | |
out=position_ids[textlen + framelen * 4 : textlen + framelen * 5], | |
dtype=torch.long, | |
device=data.device, | |
) | |
position_ids = position_ids.unsqueeze(0) | |
return tokens, attention_mask, position_ids | |
def my_update_mems( | |
hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len | |
): | |
if hiddens is None: | |
return None, mems_indexs | |
mem_num = len(hiddens) | |
ret_mem = [] | |
with torch.no_grad(): | |
for id in range(mem_num): | |
if hiddens[id][0] is None: | |
ret_mem.append(None) | |
else: | |
if ( | |
id == 0 | |
and limited_spatial_channel_mem | |
and mems_indexs[id] + hiddens[0][0].shape[1] >= text_len + frame_len | |
): | |
if mems_indexs[id] == 0: | |
for layer, hidden in enumerate(hiddens[id]): | |
mems_buffers[id][layer, :, :text_len] = hidden.expand( | |
mems_buffers[id].shape[1], -1, -1 | |
)[:, :text_len] | |
new_mem_len_part2 = ( | |
mems_indexs[id] + hiddens[0][0].shape[1] - text_len | |
) % frame_len | |
if new_mem_len_part2 > 0: | |
for layer, hidden in enumerate(hiddens[id]): | |
mems_buffers[id][ | |
layer, :, text_len : text_len + new_mem_len_part2 | |
] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[ | |
:, -new_mem_len_part2: | |
] | |
mems_indexs[id] = text_len + new_mem_len_part2 | |
else: | |
for layer, hidden in enumerate(hiddens[id]): | |
mems_buffers[id][ | |
layer, | |
:, | |
mems_indexs[id] : mems_indexs[id] + hidden.shape[1], | |
] = hidden.expand(mems_buffers[id].shape[1], -1, -1) | |
mems_indexs[id] += hidden.shape[1] | |
ret_mem.append(mems_buffers[id][:, :, : mems_indexs[id]]) | |
return ret_mem, mems_indexs | |
def my_save_multiple_images(imgs, path, subdir, debug=True): | |
# imgs: list of tensor images | |
if debug: | |
imgs = torch.cat(imgs, dim=0) | |
print("\nSave to: ", path, flush=True) | |
save_image(imgs, path, normalize=True) | |
else: | |
print("\nSave to: ", path, flush=True) | |
single_frame_path = os.path.join(path, subdir) | |
os.makedirs(single_frame_path, exist_ok=True) | |
for i in range(len(imgs)): | |
save_image( | |
imgs[i], | |
os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), | |
normalize=True, | |
) | |
os.chmod( | |
os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), | |
stat.S_IRWXO + stat.S_IRWXG + stat.S_IRWXU, | |
) | |
save_image( | |
torch.cat(imgs, dim=0), | |
os.path.join(single_frame_path, f"frame_concat.jpg"), | |
normalize=True, | |
) | |
os.chmod( | |
os.path.join(single_frame_path, f"frame_concat.jpg"), | |
stat.S_IRWXO + stat.S_IRWXG + stat.S_IRWXU, | |
) | |
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len): | |
# The fisrt token's position id of the frame that the next token belongs to; | |
if total_len < text_len: | |
return None | |
return (total_len - text_len) // frame_len * frame_len + text_len | |
def my_filling_sequence( | |
model, | |
args, | |
seq, | |
batch_size, | |
get_masks_and_position_ids, | |
text_len, | |
frame_len, | |
strategy=BaseStrategy(), | |
strategy2=BaseStrategy(), | |
mems=None, | |
log_text_attention_weights=0, # default to 0: no artificial change | |
mode_stage1=True, | |
enforce_no_swin=False, | |
guider_seq=None, | |
guider_text_len=0, | |
guidance_alpha=1, | |
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内 | |
**kw_args, | |
): | |
""" | |
seq: [2, 3, 5, ..., -1(to be generated), -1, ...] | |
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size] | |
cache, should be first mems.shape[1] parts of context_tokens. | |
mems are the first-level citizens here, but we don't assume what is memorized. | |
input mems are used when multi-phase generation. | |
""" | |
if guider_seq is not None: | |
logging.debug("Using Guidance In Inference") | |
if limited_spatial_channel_mem: | |
logging.debug("Limit spatial-channel's mem to current frame") | |
assert len(seq.shape) == 2 | |
# building the initial tokens, attention_mask, and position_ids | |
actual_context_length = 0 | |
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens | |
actual_context_length += 1 # [0, context_length-1] are given | |
assert actual_context_length > 0 | |
current_frame_num = (actual_context_length - text_len) // frame_len | |
assert current_frame_num >= 0 | |
context_length = text_len + current_frame_num * frame_len | |
tokens, attention_mask, position_ids = get_masks_and_position_ids( | |
seq, text_len, frame_len | |
) | |
tokens = tokens[..., :context_length] | |
input_tokens = tokens.clone() | |
if guider_seq is not None: | |
guider_index_delta = text_len - guider_text_len | |
guider_tokens, guider_attention_mask, guider_position_ids = ( | |
get_masks_and_position_ids(guider_seq, guider_text_len, frame_len) | |
) | |
guider_tokens = guider_tokens[..., : context_length - guider_index_delta] | |
guider_input_tokens = guider_tokens.clone() | |
for fid in range(current_frame_num): | |
input_tokens[:, text_len + 400 * fid] = tokenizer["<start_of_image>"] | |
if guider_seq is not None: | |
guider_input_tokens[:, guider_text_len + 400 * fid] = tokenizer[ | |
"<start_of_image>" | |
] | |
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16 | |
# initialize generation | |
counter = context_length - 1 # Last fixed index is ``counter'' | |
index = 0 # Next forward starting index, also the length of cache. | |
mems_buffers_on_GPU = False | |
mems_indexs = [0, 0] | |
mems_len = [ | |
(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74, | |
5 * 400 + 74, | |
] | |
mems_buffers = [ | |
torch.zeros( | |
args.num_layers, | |
batch_size, | |
mem_len, | |
args.hidden_size * 2, | |
dtype=next(model.parameters()).dtype, | |
) | |
for mem_len in mems_len | |
] | |
if guider_seq is not None: | |
guider_attention_mask = guider_attention_mask.type_as( | |
next(model.parameters()) | |
) # if fp16 | |
guider_mems_buffers = [ | |
torch.zeros( | |
args.num_layers, | |
batch_size, | |
mem_len, | |
args.hidden_size * 2, | |
dtype=next(model.parameters()).dtype, | |
) | |
for mem_len in mems_len | |
] | |
guider_mems_indexs = [0, 0] | |
guider_mems = None | |
torch.cuda.empty_cache() | |
# step-by-step generation | |
while counter < len(seq[0]) - 1: | |
# we have generated counter+1 tokens | |
# Now, we want to generate seq[counter + 1], | |
# token[:, index: counter+1] needs forwarding. | |
if index == 0: | |
group_size = ( | |
2 | |
if (input_tokens.shape[0] == batch_size and not mode_stage1) | |
else batch_size | |
) | |
logits_all = None | |
for batch_idx in range(0, input_tokens.shape[0], group_size): | |
logits, *output_per_layers = model( | |
input_tokens[batch_idx : batch_idx + group_size, index:], | |
position_ids[..., index : counter + 1], | |
attention_mask, # TODO memlen | |
mems=mems, | |
text_len=text_len, | |
frame_len=frame_len, | |
counter=counter, | |
log_text_attention_weights=log_text_attention_weights, | |
enforce_no_swin=enforce_no_swin, | |
**kw_args, | |
) | |
logits_all = ( | |
torch.cat((logits_all, logits), dim=0) | |
if logits_all is not None | |
else logits | |
) | |
mem_kv01 = [ | |
[o["mem_kv"][0] for o in output_per_layers], | |
[o["mem_kv"][1] for o in output_per_layers], | |
] | |
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( | |
text_len, frame_len, mem_kv01[0][0].shape[1] | |
) | |
for id, mem_kv in enumerate(mem_kv01): | |
for layer, mem_kv_perlayer in enumerate(mem_kv): | |
if limited_spatial_channel_mem and id == 0: | |
mems_buffers[id][ | |
layer, batch_idx : batch_idx + group_size, :text_len | |
] = mem_kv_perlayer.expand( | |
min(group_size, input_tokens.shape[0] - batch_idx), | |
-1, | |
-1, | |
)[ | |
:, :text_len | |
] | |
mems_buffers[id][ | |
layer, | |
batch_idx : batch_idx + group_size, | |
text_len : text_len | |
+ mem_kv_perlayer.shape[1] | |
- next_tokens_frame_begin_id, | |
] = mem_kv_perlayer.expand( | |
min(group_size, input_tokens.shape[0] - batch_idx), | |
-1, | |
-1, | |
)[ | |
:, next_tokens_frame_begin_id: | |
] | |
else: | |
mems_buffers[id][ | |
layer, | |
batch_idx : batch_idx + group_size, | |
: mem_kv_perlayer.shape[1], | |
] = mem_kv_perlayer.expand( | |
min(group_size, input_tokens.shape[0] - batch_idx), | |
-1, | |
-1, | |
) | |
mems_indexs[0], mems_indexs[1] = ( | |
mem_kv01[0][0].shape[1], | |
mem_kv01[1][0].shape[1], | |
) | |
if limited_spatial_channel_mem: | |
mems_indexs[0] -= next_tokens_frame_begin_id - text_len | |
mems = [mems_buffers[id][:, :, : mems_indexs[id]] for id in range(2)] | |
logits = logits_all | |
# Guider | |
if guider_seq is not None: | |
guider_logits_all = None | |
for batch_idx in range(0, guider_input_tokens.shape[0], group_size): | |
guider_logits, *guider_output_per_layers = model( | |
guider_input_tokens[ | |
batch_idx : batch_idx + group_size, | |
max(index - guider_index_delta, 0) :, | |
], | |
guider_position_ids[ | |
..., | |
max(index - guider_index_delta, 0) : counter | |
+ 1 | |
- guider_index_delta, | |
], | |
guider_attention_mask, | |
mems=guider_mems, | |
text_len=guider_text_len, | |
frame_len=frame_len, | |
counter=counter - guider_index_delta, | |
log_text_attention_weights=log_text_attention_weights, | |
enforce_no_swin=enforce_no_swin, | |
**kw_args, | |
) | |
guider_logits_all = ( | |
torch.cat((guider_logits_all, guider_logits), dim=0) | |
if guider_logits_all is not None | |
else guider_logits | |
) | |
guider_mem_kv01 = [ | |
[o["mem_kv"][0] for o in guider_output_per_layers], | |
[o["mem_kv"][1] for o in guider_output_per_layers], | |
] | |
for id, guider_mem_kv in enumerate(guider_mem_kv01): | |
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv): | |
if limited_spatial_channel_mem and id == 0: | |
guider_mems_buffers[id][ | |
layer, | |
batch_idx : batch_idx + group_size, | |
:guider_text_len, | |
] = guider_mem_kv_perlayer.expand( | |
min(group_size, input_tokens.shape[0] - batch_idx), | |
-1, | |
-1, | |
)[ | |
:, :guider_text_len | |
] | |
guider_next_tokens_frame_begin_id = ( | |
calc_next_tokens_frame_begin_id( | |
guider_text_len, | |
frame_len, | |
guider_mem_kv_perlayer.shape[1], | |
) | |
) | |
guider_mems_buffers[id][ | |
layer, | |
batch_idx : batch_idx + group_size, | |
guider_text_len : guider_text_len | |
+ guider_mem_kv_perlayer.shape[1] | |
- guider_next_tokens_frame_begin_id, | |
] = guider_mem_kv_perlayer.expand( | |
min(group_size, input_tokens.shape[0] - batch_idx), | |
-1, | |
-1, | |
)[ | |
:, guider_next_tokens_frame_begin_id: | |
] | |
else: | |
guider_mems_buffers[id][ | |
layer, | |
batch_idx : batch_idx + group_size, | |
: guider_mem_kv_perlayer.shape[1], | |
] = guider_mem_kv_perlayer.expand( | |
min(group_size, input_tokens.shape[0] - batch_idx), | |
-1, | |
-1, | |
) | |
guider_mems_indexs[0], guider_mems_indexs[1] = ( | |
guider_mem_kv01[0][0].shape[1], | |
guider_mem_kv01[1][0].shape[1], | |
) | |
if limited_spatial_channel_mem: | |
guider_mems_indexs[0] -= ( | |
guider_next_tokens_frame_begin_id - guider_text_len | |
) | |
guider_mems = [ | |
guider_mems_buffers[id][:, :, : guider_mems_indexs[id]] | |
for id in range(2) | |
] | |
guider_logits = guider_logits_all | |
else: | |
if not mems_buffers_on_GPU: | |
if not mode_stage1: | |
torch.cuda.empty_cache() | |
for idx, mem in enumerate(mems): | |
mems[idx] = mem.to(next(model.parameters()).device) | |
if guider_seq is not None: | |
for idx, mem in enumerate(guider_mems): | |
guider_mems[idx] = mem.to(next(model.parameters()).device) | |
else: | |
torch.cuda.empty_cache() | |
for idx, mem_buffer in enumerate(mems_buffers): | |
mems_buffers[idx] = mem_buffer.to( | |
next(model.parameters()).device | |
) | |
mems = [ | |
mems_buffers[id][:, :, : mems_indexs[id]] for id in range(2) | |
] | |
if guider_seq is not None: | |
for idx, guider_mem_buffer in enumerate(guider_mems_buffers): | |
guider_mems_buffers[idx] = guider_mem_buffer.to( | |
next(model.parameters()).device | |
) | |
guider_mems = [ | |
guider_mems_buffers[id][:, :, : guider_mems_indexs[id]] | |
for id in range(2) | |
] | |
mems_buffers_on_GPU = True | |
logits, *output_per_layers = model( | |
input_tokens[:, index:], | |
position_ids[..., index : counter + 1], | |
attention_mask, # TODO memlen | |
mems=mems, | |
text_len=text_len, | |
frame_len=frame_len, | |
counter=counter, | |
log_text_attention_weights=log_text_attention_weights, | |
enforce_no_swin=enforce_no_swin, | |
limited_spatial_channel_mem=limited_spatial_channel_mem, | |
**kw_args, | |
) | |
mem_kv0, mem_kv1 = [o["mem_kv"][0] for o in output_per_layers], [ | |
o["mem_kv"][1] for o in output_per_layers | |
] | |
if guider_seq is not None: | |
guider_logits, *guider_output_per_layers = model( | |
guider_input_tokens[:, max(index - guider_index_delta, 0) :], | |
guider_position_ids[ | |
..., | |
max(index - guider_index_delta, 0) : counter | |
+ 1 | |
- guider_index_delta, | |
], | |
guider_attention_mask, | |
mems=guider_mems, | |
text_len=guider_text_len, | |
frame_len=frame_len, | |
counter=counter - guider_index_delta, | |
log_text_attention_weights=0, | |
enforce_no_swin=enforce_no_swin, | |
limited_spatial_channel_mem=limited_spatial_channel_mem, | |
**kw_args, | |
) | |
guider_mem_kv0, guider_mem_kv1 = [ | |
o["mem_kv"][0] for o in guider_output_per_layers | |
], [o["mem_kv"][1] for o in guider_output_per_layers] | |
if not mems_buffers_on_GPU: | |
torch.cuda.empty_cache() | |
for idx, mem_buffer in enumerate(mems_buffers): | |
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device) | |
if guider_seq is not None: | |
for idx, guider_mem_buffer in enumerate(guider_mems_buffers): | |
guider_mems_buffers[idx] = guider_mem_buffer.to( | |
next(model.parameters()).device | |
) | |
mems_buffers_on_GPU = True | |
mems, mems_indexs = my_update_mems( | |
[mem_kv0, mem_kv1], | |
mems_buffers, | |
mems_indexs, | |
limited_spatial_channel_mem, | |
text_len, | |
frame_len, | |
) | |
if guider_seq is not None: | |
guider_mems, guider_mems_indexs = my_update_mems( | |
[guider_mem_kv0, guider_mem_kv1], | |
guider_mems_buffers, | |
guider_mems_indexs, | |
limited_spatial_channel_mem, | |
guider_text_len, | |
frame_len, | |
) | |
counter += 1 | |
index = counter | |
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size] | |
tokens = tokens.expand(batch_size, -1) | |
if guider_seq is not None: | |
guider_logits = guider_logits[:, -1].expand(batch_size, -1) | |
guider_tokens = guider_tokens.expand(batch_size, -1) | |
if seq[-1][counter].item() < 0: | |
# sampling | |
guided_logits = ( | |
guider_logits + (logits - guider_logits) * guidance_alpha | |
if guider_seq is not None | |
else logits | |
) | |
if mode_stage1 and counter < text_len + 400: | |
tokens, mems = strategy.forward(guided_logits, tokens, mems) | |
else: | |
tokens, mems = strategy2.forward(guided_logits, tokens, mems) | |
if guider_seq is not None: | |
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1) | |
if seq[0][counter].item() >= 0: | |
for si in range(seq.shape[0]): | |
if seq[si][counter].item() >= 0: | |
tokens[si, -1] = seq[si, counter] | |
if guider_seq is not None: | |
guider_tokens[si, -1] = guider_seq[ | |
si, counter - guider_index_delta | |
] | |
else: | |
tokens = torch.cat( | |
( | |
tokens, | |
seq[:, counter : counter + 1] | |
.clone() | |
.expand(tokens.shape[0], 1) | |
.to(device=tokens.device, dtype=tokens.dtype), | |
), | |
dim=1, | |
) | |
if guider_seq is not None: | |
guider_tokens = torch.cat( | |
( | |
guider_tokens, | |
guider_seq[ | |
:, | |
counter | |
- guider_index_delta : counter | |
+ 1 | |
- guider_index_delta, | |
] | |
.clone() | |
.expand(guider_tokens.shape[0], 1) | |
.to(device=guider_tokens.device, dtype=guider_tokens.dtype), | |
), | |
dim=1, | |
) | |
input_tokens = tokens.clone() | |
if guider_seq is not None: | |
guider_input_tokens = guider_tokens.clone() | |
if (index - text_len - 1) // 400 < ( | |
input_tokens.shape[-1] - text_len - 1 | |
) // 400: | |
boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len | |
while boi_idx < input_tokens.shape[-1]: | |
input_tokens[:, boi_idx] = tokenizer["<start_of_image>"] | |
if guider_seq is not None: | |
guider_input_tokens[:, boi_idx - guider_index_delta] = tokenizer[ | |
"<start_of_image>" | |
] | |
boi_idx += 400 | |
if strategy.is_done: | |
break | |
return strategy.finalize(tokens, mems) | |
class InferenceModel_Sequential(CogVideoCacheModel): | |
def __init__(self, args, transformer=None, parallel_output=True): | |
super().__init__( | |
args, | |
transformer=transformer, | |
parallel_output=parallel_output, | |
window_size=-1, | |
cogvideo_stage=1, | |
) | |
# TODO: check it | |
def final_forward(self, logits, **kwargs): | |
logits_parallel = logits | |
logits_parallel = torch.nn.functional.linear( | |
logits_parallel.float(), | |
self.transformer.word_embeddings.weight[:20000].float(), | |
) | |
return logits_parallel | |
class InferenceModel_Interpolate(CogVideoCacheModel): | |
def __init__(self, args, transformer=None, parallel_output=True): | |
super().__init__( | |
args, | |
transformer=transformer, | |
parallel_output=parallel_output, | |
window_size=10, | |
cogvideo_stage=2, | |
) | |
# TODO: check it | |
def final_forward(self, logits, **kwargs): | |
logits_parallel = logits | |
logits_parallel = torch.nn.functional.linear( | |
logits_parallel.float(), | |
self.transformer.word_embeddings.weight[:20000].float(), | |
) | |
return logits_parallel | |
def main(args): | |
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1 | |
rank_id = args.device % args.parallel_size | |
generate_frame_num = args.generate_frame_num | |
if args.stage_1 or args.both_stages: | |
model_stage1, args = InferenceModel_Sequential.from_pretrained( | |
args, "cogvideo-stage1" | |
) | |
model_stage1.eval() | |
if args.both_stages: | |
model_stage1 = model_stage1.cpu() | |
if args.stage_2 or args.both_stages: | |
model_stage2, args = InferenceModel_Interpolate.from_pretrained( | |
args, "cogvideo-stage2" | |
) | |
model_stage2.eval() | |
if args.both_stages: | |
model_stage2 = model_stage2.cpu() | |
invalid_slices = [slice(tokenizer.num_image_tokens, None)] | |
strategy_cogview2 = CoglmStrategy(invalid_slices, temperature=1.0, top_k=16) | |
strategy_cogvideo = CoglmStrategy( | |
invalid_slices, | |
temperature=args.temperature, | |
top_k=args.top_k, | |
temperature2=args.coglm_temperature2, | |
) | |
if not args.stage_1: | |
from sr_pipeline import DirectSuperResolution | |
dsr_path = auto_create( | |
"cogview2-dsr", path=None | |
) # path=os.getenv('SAT_HOME', '~/.sat_models') | |
dsr = DirectSuperResolution(args, dsr_path, max_bz=12, onCUDA=False) | |
def process_stage2( | |
model, | |
seq_text, | |
duration, | |
video_raw_text=None, | |
video_guidance_text="视频", | |
parent_given_tokens=None, | |
conddir=None, | |
outputdir=None, | |
gpu_rank=0, | |
gpu_parallel_size=1, | |
): | |
stage2_starttime = time.time() | |
use_guidance = args.use_guidance_stage2 | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage-2 model to cuda") | |
model = model.cuda() | |
logging.debug( | |
"moving in stage-2 model takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
try: | |
if parent_given_tokens is None: | |
assert conddir is not None | |
parent_given_tokens = torch.load( | |
os.path.join(conddir, "frame_tokens.pt"), map_location="cpu" | |
) | |
sample_num_allgpu = parent_given_tokens.shape[0] | |
sample_num = sample_num_allgpu // gpu_parallel_size | |
assert sample_num * gpu_parallel_size == sample_num_allgpu | |
parent_given_tokens = parent_given_tokens[ | |
gpu_rank * sample_num : (gpu_rank + 1) * sample_num | |
] | |
except: | |
logging.critical("No frame_tokens found in interpolation, skip") | |
return False | |
# CogVideo Stage2 Generation | |
while ( | |
duration >= 0.5 | |
): # TODO: You can change the boundary to change the frame rate | |
parent_given_tokens_num = parent_given_tokens.shape[1] | |
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2 | |
generate_batchsize_total = generate_batchsize_persample * sample_num | |
total_frames = generate_frame_num | |
frame_len = 400 | |
enc_text = tokenizer.encode(seq_text) | |
enc_duration = tokenizer.encode(str(float(duration)) + "秒") | |
seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ enc_text | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
text_len = len(seq) - frame_len * generate_frame_num - 1 | |
logging.info( | |
"[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format( | |
int(4 / duration), tokenizer.decode(enc_text) | |
) | |
) | |
# generation | |
seq = ( | |
torch.cuda.LongTensor(seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(generate_batchsize_total, 1) | |
) | |
for sample_i in range(sample_num): | |
for i in range(generate_batchsize_persample): | |
seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 : text_len + 1 + 400 | |
] = parent_given_tokens[sample_i][2 * i] | |
seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 400 : text_len + 1 + 800 | |
] = parent_given_tokens[sample_i][2 * i + 1] | |
seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 800 : text_len + 1 + 1200 | |
] = parent_given_tokens[sample_i][2 * i + 2] | |
if use_guidance: | |
guider_seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ tokenizer.encode(video_guidance_text) | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 | |
guider_seq = ( | |
torch.cuda.LongTensor(guider_seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(generate_batchsize_total, 1) | |
) | |
for sample_i in range(sample_num): | |
for i in range(generate_batchsize_persample): | |
guider_seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 : text_len + 1 + 400 | |
] = parent_given_tokens[sample_i][2 * i] | |
guider_seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 400 : text_len + 1 + 800 | |
] = parent_given_tokens[sample_i][2 * i + 1] | |
guider_seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 800 : text_len + 1 + 1200 | |
] = parent_given_tokens[sample_i][2 * i + 2] | |
video_log_text_attention_weights = 0 | |
else: | |
guider_seq = None | |
guider_text_len = 0 | |
video_log_text_attention_weights = 1.4 | |
mbz = args.max_inference_batch_size | |
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0 | |
output_list = [] | |
start_time = time.time() | |
for tim in range(max(generate_batchsize_total // mbz, 1)): | |
input_seq = ( | |
seq[: min(generate_batchsize_total, mbz)].clone() | |
if tim == 0 | |
else seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
guider_seq2 = ( | |
( | |
guider_seq[: min(generate_batchsize_total, mbz)].clone() | |
if tim == 0 | |
else guider_seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
if guider_seq is not None | |
else None | |
) | |
output_list.append( | |
my_filling_sequence( | |
model, | |
args, | |
input_seq, | |
batch_size=min(generate_batchsize_total, mbz), | |
get_masks_and_position_ids=get_masks_and_position_ids_stage2, | |
text_len=text_len, | |
frame_len=frame_len, | |
strategy=strategy_cogview2, | |
strategy2=strategy_cogvideo, | |
log_text_attention_weights=video_log_text_attention_weights, | |
mode_stage1=False, | |
guider_seq=guider_seq2, | |
guider_text_len=guider_text_len, | |
guidance_alpha=args.guidance_alpha, | |
limited_spatial_channel_mem=True, | |
)[0] | |
) | |
logging.info( | |
"Duration {:.2f}, Taken time {:.2f}\n".format( | |
duration, time.time() - start_time | |
) | |
) | |
output_tokens = torch.cat(output_list, dim=0) | |
output_tokens = output_tokens[ | |
:, text_len + 1 : text_len + 1 + (total_frames) * 400 | |
].reshape(sample_num, -1, 400 * total_frames) | |
output_tokens_merge = torch.cat( | |
( | |
output_tokens[:, :, : 1 * 400], | |
output_tokens[:, :, 400 * 3 : 4 * 400], | |
output_tokens[:, :, 400 * 1 : 2 * 400], | |
output_tokens[:, :, 400 * 4 : (total_frames) * 400], | |
), | |
dim=2, | |
).reshape(sample_num, -1, 400) | |
output_tokens_merge = torch.cat( | |
(output_tokens_merge, output_tokens[:, -1:, 400 * 2 : 3 * 400]), dim=1 | |
) | |
duration /= 2 | |
parent_given_tokens = output_tokens_merge | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage 2 model to cpu") | |
model = model.cpu() | |
torch.cuda.empty_cache() | |
logging.debug( | |
"moving out model2 takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
logging.info( | |
"CogVideo Stage2 completed. Taken time {:.2f}\n".format( | |
time.time() - stage2_starttime | |
) | |
) | |
# decoding | |
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge] | |
# os.makedirs(output_dir_full_path, exist_ok=True) | |
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False) | |
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt')) | |
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2") | |
# direct super-resolution by CogView2 | |
logging.info("[Direct super-resolution]") | |
dsr_starttime = time.time() | |
enc_text = tokenizer.encode(seq_text) | |
frame_num_per_sample = parent_given_tokens.shape[1] | |
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) | |
text_seq = ( | |
torch.cuda.LongTensor(enc_text, device=args.device) | |
.unsqueeze(0) | |
.repeat(parent_given_tokens_2d.shape[0], 1) | |
) | |
sred_tokens = dsr(text_seq, parent_given_tokens_2d) | |
decoded_sr_videos = [] | |
for sample_i in range(sample_num): | |
decoded_sr_imgs = [] | |
for frame_i in range(frame_num_per_sample): | |
decoded_sr_img = tokenizer.decode( | |
image_ids=sred_tokens[frame_i + sample_i * frame_num_per_sample][ | |
-3600: | |
] | |
) | |
decoded_sr_imgs.append( | |
torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)) | |
) | |
decoded_sr_videos.append(decoded_sr_imgs) | |
for sample_i in range(sample_num): | |
my_save_multiple_images( | |
decoded_sr_videos[sample_i], | |
outputdir, | |
subdir=f"frames/{sample_i+sample_num*gpu_rank}", | |
debug=False, | |
) | |
os.system( | |
f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125" | |
) | |
logging.info( | |
"Direct super-resolution completed. Taken time {:.2f}\n".format( | |
time.time() - dsr_starttime | |
) | |
) | |
return True | |
def process_stage1( | |
model, | |
seq_text, | |
duration, | |
video_raw_text=None, | |
video_guidance_text="视频", | |
image_text_suffix="", | |
outputdir=None, | |
batch_size=1, | |
): | |
process_start_time = time.time() | |
use_guide = args.use_guidance_stage1 | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage 1 model to cuda") | |
model = model.cuda() | |
logging.debug( | |
"moving in model1 takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
if video_raw_text is None: | |
video_raw_text = seq_text | |
mbz = ( | |
args.stage1_max_inference_batch_size | |
if args.stage1_max_inference_batch_size > 0 | |
else args.max_inference_batch_size | |
) | |
assert batch_size < mbz or batch_size % mbz == 0 | |
frame_len = 400 | |
# generate the first frame: | |
enc_text = tokenizer.encode(seq_text + image_text_suffix) | |
seq_1st = ( | |
enc_text + [tokenizer["<start_of_image>"]] + [-1] * 400 | |
) # IV!! # test local!!! # test randboi!!! | |
logging.info( | |
"[Generating First Frame with CogView2]Raw text: {:s}".format( | |
tokenizer.decode(enc_text) | |
) | |
) | |
text_len_1st = len(seq_1st) - frame_len * 1 - 1 | |
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0) | |
output_list_1st = [] | |
for tim in range(max(batch_size // mbz, 1)): | |
start_time = time.time() | |
output_list_1st.append( | |
my_filling_sequence( | |
model, | |
args, | |
seq_1st.clone(), | |
batch_size=min(batch_size, mbz), | |
get_masks_and_position_ids=get_masks_and_position_ids_stage1, | |
text_len=text_len_1st, | |
frame_len=frame_len, | |
strategy=strategy_cogview2, | |
strategy2=strategy_cogvideo, | |
log_text_attention_weights=1.4, | |
enforce_no_swin=True, | |
mode_stage1=True, | |
)[0] | |
) | |
logging.info( | |
"[First Frame]Taken time {:.2f}\n".format(time.time() - start_time) | |
) | |
output_tokens_1st = torch.cat(output_list_1st, dim=0) | |
given_tokens = output_tokens_1st[ | |
:, text_len_1st + 1 : text_len_1st + 401 | |
].unsqueeze( | |
1 | |
) # given_tokens.shape: [bs, frame_num, 400] | |
# generate subsequent frames: | |
total_frames = generate_frame_num | |
enc_duration = tokenizer.encode(str(float(duration)) + "秒") | |
if use_guide: | |
video_raw_text = video_raw_text + " 视频" | |
enc_text_video = tokenizer.encode(video_raw_text) | |
seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ enc_text_video | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
guider_seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ tokenizer.encode(video_guidance_text) | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
logging.info( | |
"[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format( | |
4 / duration, tokenizer.decode(enc_text_video) | |
) | |
) | |
text_len = len(seq) - frame_len * generate_frame_num - 1 | |
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 | |
seq = ( | |
torch.cuda.LongTensor(seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(batch_size, 1) | |
) | |
guider_seq = ( | |
torch.cuda.LongTensor(guider_seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(batch_size, 1) | |
) | |
for given_frame_id in range(given_tokens.shape[1]): | |
seq[ | |
:, | |
text_len | |
+ 1 | |
+ given_frame_id * 400 : text_len | |
+ 1 | |
+ (given_frame_id + 1) * 400, | |
] = given_tokens[:, given_frame_id] | |
guider_seq[ | |
:, | |
guider_text_len | |
+ 1 | |
+ given_frame_id * 400 : guider_text_len | |
+ 1 | |
+ (given_frame_id + 1) * 400, | |
] = given_tokens[:, given_frame_id] | |
output_list = [] | |
if use_guide: | |
video_log_text_attention_weights = 0 | |
else: | |
guider_seq = None | |
video_log_text_attention_weights = 1.4 | |
for tim in range(max(batch_size // mbz, 1)): | |
start_time = time.time() | |
input_seq = ( | |
seq[: min(batch_size, mbz)].clone() | |
if tim == 0 | |
else seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
guider_seq2 = ( | |
( | |
guider_seq[: min(batch_size, mbz)].clone() | |
if tim == 0 | |
else guider_seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
if guider_seq is not None | |
else None | |
) | |
output_list.append( | |
my_filling_sequence( | |
model, | |
args, | |
input_seq, | |
batch_size=min(batch_size, mbz), | |
get_masks_and_position_ids=get_masks_and_position_ids_stage1, | |
text_len=text_len, | |
frame_len=frame_len, | |
strategy=strategy_cogview2, | |
strategy2=strategy_cogvideo, | |
log_text_attention_weights=video_log_text_attention_weights, | |
guider_seq=guider_seq2, | |
guider_text_len=guider_text_len, | |
guidance_alpha=args.guidance_alpha, | |
limited_spatial_channel_mem=True, | |
mode_stage1=True, | |
)[0] | |
) | |
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len :] | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage 1 model to cpu") | |
model = model.cpu() | |
torch.cuda.empty_cache() | |
logging.debug( | |
"moving in model1 takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
# decoding | |
imgs, sred_imgs, txts = [], [], [] | |
for seq in output_tokens: | |
decoded_imgs = [ | |
torch.nn.functional.interpolate( | |
tokenizer.decode(image_ids=seq.tolist()[i * 400 : (i + 1) * 400]), | |
size=(480, 480), | |
) | |
for i in range(total_frames) | |
] | |
imgs.append(decoded_imgs) # only the last image (target) | |
assert len(imgs) == batch_size | |
save_tokens = ( | |
output_tokens[:, : +total_frames * 400].reshape(-1, total_frames, 400).cpu() | |
) | |
if outputdir is not None: | |
for clip_i in range(len(imgs)): | |
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) | |
my_save_multiple_images( | |
imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False | |
) | |
os.system( | |
f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25" | |
) | |
torch.save(save_tokens, os.path.join(outputdir, "frame_tokens.pt")) | |
logging.info( | |
"CogVideo Stage1 completed. Taken time {:.2f}\n".format( | |
time.time() - process_start_time | |
) | |
) | |
return save_tokens | |
# ====================================================================================================== | |
if args.stage_1 or args.both_stages: | |
if args.input_source != "interactive": | |
with open(args.input_source, "r") as fin: | |
promptlist = fin.readlines() | |
promptlist = [p.strip() for p in promptlist] | |
else: | |
promptlist = None | |
now_qi = -1 | |
while True: | |
now_qi += 1 | |
if promptlist is not None: # with input-source | |
if args.multi_gpu: | |
if now_qi % dist.get_world_size() != dist.get_rank(): | |
continue | |
rk = dist.get_rank() | |
else: | |
rk = 0 | |
raw_text = promptlist[now_qi] | |
raw_text = raw_text.strip() | |
print(f"Working on Line No. {now_qi} on {rk}... [{raw_text}]") | |
else: # interactive | |
raw_text = input("\nPlease Input Query (stop to exit) >>> ") | |
raw_text = raw_text.strip() | |
if not raw_text: | |
print("Query should not be empty!") | |
continue | |
if raw_text == "stop": | |
return | |
try: | |
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}") | |
parent_given_tokens = process_stage1( | |
model_stage1, | |
raw_text, | |
duration=4.0, | |
video_raw_text=raw_text, | |
video_guidance_text="视频", | |
image_text_suffix=" 高清摄影", | |
outputdir=path if args.stage_1 else None, | |
batch_size=args.batch_size, | |
) | |
if args.both_stages: | |
process_stage2( | |
model_stage2, | |
raw_text, | |
duration=2.0, | |
video_raw_text=raw_text + " 视频", | |
video_guidance_text="视频", | |
parent_given_tokens=parent_given_tokens, | |
outputdir=path, | |
gpu_rank=0, | |
gpu_parallel_size=1, | |
) # TODO: 修改 | |
except (ValueError, FileNotFoundError) as e: | |
print(e) | |
continue | |
elif args.stage_2: | |
sample_dirs = os.listdir(args.output_path) | |
for sample in sample_dirs: | |
raw_text = sample.split("_")[-1] | |
path = os.path.join(args.output_path, sample, "Interp") | |
parent_given_tokens = torch.load( | |
os.path.join(args.output_path, sample, "frame_tokens.pt") | |
) | |
process_stage2( | |
raw_text, | |
duration=2.0, | |
video_raw_text=raw_text + " 视频", | |
video_guidance_text="视频", | |
parent_given_tokens=parent_given_tokens, | |
outputdir=path, | |
gpu_rank=0, | |
gpu_parallel_size=1, | |
) # TODO: 修改 | |
else: | |
assert False | |
if __name__ == "__main__": | |
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) | |
py_parser = argparse.ArgumentParser(add_help=False) | |
py_parser.add_argument("--generate-frame-num", type=int, default=5) | |
py_parser.add_argument("--coglm-temperature2", type=float, default=0.89) | |
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成,0是超分,0.5/1/2是插帧 | |
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间 | |
py_parser.add_argument("--use-guidance-stage1", action="store_true") | |
py_parser.add_argument("--use-guidance-stage2", action="store_true") | |
py_parser.add_argument("--guidance-alpha", type=float, default=3.0) | |
py_parser.add_argument( | |
"--stage-1", action="store_true" | |
) # stage 1: sequential generation | |
py_parser.add_argument("--stage-2", action="store_true") # stage 2: interp + dsr | |
py_parser.add_argument( | |
"--both-stages", action="store_true" | |
) # stage 1&2: sequential generation; interp + dsr | |
py_parser.add_argument("--parallel-size", type=int, default=1) | |
py_parser.add_argument( | |
"--stage1-max-inference-batch-size", type=int, default=-1 | |
) # -1: use max-inference-batch-size | |
py_parser.add_argument("--multi-gpu", action="store_true") | |
CogVideoCacheModel.add_model_specific_args(py_parser) | |
known, args_list = py_parser.parse_known_args() | |
args = get_args(args_list) | |
args = argparse.Namespace(**vars(args), **vars(known)) | |
args.layout = [int(x) for x in args.layout.split(",")] | |
args.do_train = False | |
torch.cuda.set_device(args.device) | |
with torch.no_grad(): | |
main(args) | |