Baraaqasem's picture
Upload 585 files
5d32408 verified
# -*- encoding: utf-8 -*-
"""
@File : cogvideo_pipeline.py
@Time : 2022/07/15 11:24:56
@Author : Wenyi Hong
@Version : 1.0
@Contact : [email protected]
"""
# here put the import lib
import os
import sys
import torch
import argparse
import time
from torchvision.utils import save_image
import stat
from videogen_hub.depend.icetk import icetk as tokenizer
import logging, sys
import torch.distributed as dist
tokenizer.add_special_tokens(
["<start_of_image>", "<start_of_english>", "<start_of_chinese>"]
)
from SwissArmyTransformer import get_args
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
from SwissArmyTransformer.generation.utils import (
timed_name,
save_multiple_images,
generate_continually,
)
from SwissArmyTransformer.resources import auto_create
from .models.cogvideo_cache_model import CogVideoCacheModel
from .coglm_strategy import CoglmStrategy
def get_masks_and_position_ids_stage1(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones(
(1, textlen + framelen, textlen + framelen), device=data.device
)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long, device=data.device)
torch.arange(
textlen, out=position_ids[:textlen], dtype=torch.long, device=data.device
)
torch.arange(
512,
512 + seq_length - textlen,
out=position_ids[textlen:],
dtype=torch.long,
device=data.device,
)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def get_masks_and_position_ids_stage2(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones(
(1, textlen + framelen, textlen + framelen), device=data.device
)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long, device=data.device)
torch.arange(
textlen, out=position_ids[:textlen], dtype=torch.long, device=data.device
)
frame_num = (seq_length - textlen) // framelen
assert frame_num == 5
torch.arange(
512,
512 + framelen,
out=position_ids[textlen : textlen + framelen],
dtype=torch.long,
device=data.device,
)
torch.arange(
512 + framelen * 2,
512 + framelen * 3,
out=position_ids[textlen + framelen : textlen + framelen * 2],
dtype=torch.long,
device=data.device,
)
torch.arange(
512 + framelen * (frame_num - 1),
512 + framelen * frame_num,
out=position_ids[textlen + framelen * 2 : textlen + framelen * 3],
dtype=torch.long,
device=data.device,
)
torch.arange(
512 + framelen * 1,
512 + framelen * 2,
out=position_ids[textlen + framelen * 3 : textlen + framelen * 4],
dtype=torch.long,
device=data.device,
)
torch.arange(
512 + framelen * 3,
512 + framelen * 4,
out=position_ids[textlen + framelen * 4 : textlen + framelen * 5],
dtype=torch.long,
device=data.device,
)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def my_update_mems(
hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len
):
if hiddens is None:
return None, mems_indexs
mem_num = len(hiddens)
ret_mem = []
with torch.no_grad():
for id in range(mem_num):
if hiddens[id][0] is None:
ret_mem.append(None)
else:
if (
id == 0
and limited_spatial_channel_mem
and mems_indexs[id] + hiddens[0][0].shape[1] >= text_len + frame_len
):
if mems_indexs[id] == 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, :text_len] = hidden.expand(
mems_buffers[id].shape[1], -1, -1
)[:, :text_len]
new_mem_len_part2 = (
mems_indexs[id] + hiddens[0][0].shape[1] - text_len
) % frame_len
if new_mem_len_part2 > 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][
layer, :, text_len : text_len + new_mem_len_part2
] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[
:, -new_mem_len_part2:
]
mems_indexs[id] = text_len + new_mem_len_part2
else:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][
layer,
:,
mems_indexs[id] : mems_indexs[id] + hidden.shape[1],
] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
mems_indexs[id] += hidden.shape[1]
ret_mem.append(mems_buffers[id][:, :, : mems_indexs[id]])
return ret_mem, mems_indexs
def my_save_multiple_images(imgs, path, subdir, debug=True):
# imgs: list of tensor images
if debug:
imgs = torch.cat(imgs, dim=0)
print("\nSave to: ", path, flush=True)
save_image(imgs, path, normalize=True)
else:
print("\nSave to: ", path, flush=True)
single_frame_path = os.path.join(path, subdir)
os.makedirs(single_frame_path, exist_ok=True)
for i in range(len(imgs)):
save_image(
imgs[i],
os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'),
normalize=True,
)
os.chmod(
os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'),
stat.S_IRWXO + stat.S_IRWXG + stat.S_IRWXU,
)
save_image(
torch.cat(imgs, dim=0),
os.path.join(single_frame_path, f"frame_concat.jpg"),
normalize=True,
)
os.chmod(
os.path.join(single_frame_path, f"frame_concat.jpg"),
stat.S_IRWXO + stat.S_IRWXG + stat.S_IRWXU,
)
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
# The fisrt token's position id of the frame that the next token belongs to;
if total_len < text_len:
return None
return (total_len - text_len) // frame_len * frame_len + text_len
def my_filling_sequence(
model,
args,
seq,
batch_size,
get_masks_and_position_ids,
text_len,
frame_len,
strategy=BaseStrategy(),
strategy2=BaseStrategy(),
mems=None,
log_text_attention_weights=0, # default to 0: no artificial change
mode_stage1=True,
enforce_no_swin=False,
guider_seq=None,
guider_text_len=0,
guidance_alpha=1,
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
**kw_args,
):
"""
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
"""
if guider_seq is not None:
logging.debug("Using Guidance In Inference")
if limited_spatial_channel_mem:
logging.debug("Limit spatial-channel's mem to current frame")
assert len(seq.shape) == 2
# building the initial tokens, attention_mask, and position_ids
actual_context_length = 0
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
actual_context_length += 1 # [0, context_length-1] are given
assert actual_context_length > 0
current_frame_num = (actual_context_length - text_len) // frame_len
assert current_frame_num >= 0
context_length = text_len + current_frame_num * frame_len
tokens, attention_mask, position_ids = get_masks_and_position_ids(
seq, text_len, frame_len
)
tokens = tokens[..., :context_length]
input_tokens = tokens.clone()
if guider_seq is not None:
guider_index_delta = text_len - guider_text_len
guider_tokens, guider_attention_mask, guider_position_ids = (
get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
)
guider_tokens = guider_tokens[..., : context_length - guider_index_delta]
guider_input_tokens = guider_tokens.clone()
for fid in range(current_frame_num):
input_tokens[:, text_len + 400 * fid] = tokenizer["<start_of_image>"]
if guider_seq is not None:
guider_input_tokens[:, guider_text_len + 400 * fid] = tokenizer[
"<start_of_image>"
]
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
# initialize generation
counter = context_length - 1 # Last fixed index is ``counter''
index = 0 # Next forward starting index, also the length of cache.
mems_buffers_on_GPU = False
mems_indexs = [0, 0]
mems_len = [
(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74,
5 * 400 + 74,
]
mems_buffers = [
torch.zeros(
args.num_layers,
batch_size,
mem_len,
args.hidden_size * 2,
dtype=next(model.parameters()).dtype,
)
for mem_len in mems_len
]
if guider_seq is not None:
guider_attention_mask = guider_attention_mask.type_as(
next(model.parameters())
) # if fp16
guider_mems_buffers = [
torch.zeros(
args.num_layers,
batch_size,
mem_len,
args.hidden_size * 2,
dtype=next(model.parameters()).dtype,
)
for mem_len in mems_len
]
guider_mems_indexs = [0, 0]
guider_mems = None
torch.cuda.empty_cache()
# step-by-step generation
while counter < len(seq[0]) - 1:
# we have generated counter+1 tokens
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
if index == 0:
group_size = (
2
if (input_tokens.shape[0] == batch_size and not mode_stage1)
else batch_size
)
logits_all = None
for batch_idx in range(0, input_tokens.shape[0], group_size):
logits, *output_per_layers = model(
input_tokens[batch_idx : batch_idx + group_size, index:],
position_ids[..., index : counter + 1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args,
)
logits_all = (
torch.cat((logits_all, logits), dim=0)
if logits_all is not None
else logits
)
mem_kv01 = [
[o["mem_kv"][0] for o in output_per_layers],
[o["mem_kv"][1] for o in output_per_layers],
]
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(
text_len, frame_len, mem_kv01[0][0].shape[1]
)
for id, mem_kv in enumerate(mem_kv01):
for layer, mem_kv_perlayer in enumerate(mem_kv):
if limited_spatial_channel_mem and id == 0:
mems_buffers[id][
layer, batch_idx : batch_idx + group_size, :text_len
] = mem_kv_perlayer.expand(
min(group_size, input_tokens.shape[0] - batch_idx),
-1,
-1,
)[
:, :text_len
]
mems_buffers[id][
layer,
batch_idx : batch_idx + group_size,
text_len : text_len
+ mem_kv_perlayer.shape[1]
- next_tokens_frame_begin_id,
] = mem_kv_perlayer.expand(
min(group_size, input_tokens.shape[0] - batch_idx),
-1,
-1,
)[
:, next_tokens_frame_begin_id:
]
else:
mems_buffers[id][
layer,
batch_idx : batch_idx + group_size,
: mem_kv_perlayer.shape[1],
] = mem_kv_perlayer.expand(
min(group_size, input_tokens.shape[0] - batch_idx),
-1,
-1,
)
mems_indexs[0], mems_indexs[1] = (
mem_kv01[0][0].shape[1],
mem_kv01[1][0].shape[1],
)
if limited_spatial_channel_mem:
mems_indexs[0] -= next_tokens_frame_begin_id - text_len
mems = [mems_buffers[id][:, :, : mems_indexs[id]] for id in range(2)]
logits = logits_all
# Guider
if guider_seq is not None:
guider_logits_all = None
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[
batch_idx : batch_idx + group_size,
max(index - guider_index_delta, 0) :,
],
guider_position_ids[
...,
max(index - guider_index_delta, 0) : counter
+ 1
- guider_index_delta,
],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter - guider_index_delta,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args,
)
guider_logits_all = (
torch.cat((guider_logits_all, guider_logits), dim=0)
if guider_logits_all is not None
else guider_logits
)
guider_mem_kv01 = [
[o["mem_kv"][0] for o in guider_output_per_layers],
[o["mem_kv"][1] for o in guider_output_per_layers],
]
for id, guider_mem_kv in enumerate(guider_mem_kv01):
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
if limited_spatial_channel_mem and id == 0:
guider_mems_buffers[id][
layer,
batch_idx : batch_idx + group_size,
:guider_text_len,
] = guider_mem_kv_perlayer.expand(
min(group_size, input_tokens.shape[0] - batch_idx),
-1,
-1,
)[
:, :guider_text_len
]
guider_next_tokens_frame_begin_id = (
calc_next_tokens_frame_begin_id(
guider_text_len,
frame_len,
guider_mem_kv_perlayer.shape[1],
)
)
guider_mems_buffers[id][
layer,
batch_idx : batch_idx + group_size,
guider_text_len : guider_text_len
+ guider_mem_kv_perlayer.shape[1]
- guider_next_tokens_frame_begin_id,
] = guider_mem_kv_perlayer.expand(
min(group_size, input_tokens.shape[0] - batch_idx),
-1,
-1,
)[
:, guider_next_tokens_frame_begin_id:
]
else:
guider_mems_buffers[id][
layer,
batch_idx : batch_idx + group_size,
: guider_mem_kv_perlayer.shape[1],
] = guider_mem_kv_perlayer.expand(
min(group_size, input_tokens.shape[0] - batch_idx),
-1,
-1,
)
guider_mems_indexs[0], guider_mems_indexs[1] = (
guider_mem_kv01[0][0].shape[1],
guider_mem_kv01[1][0].shape[1],
)
if limited_spatial_channel_mem:
guider_mems_indexs[0] -= (
guider_next_tokens_frame_begin_id - guider_text_len
)
guider_mems = [
guider_mems_buffers[id][:, :, : guider_mems_indexs[id]]
for id in range(2)
]
guider_logits = guider_logits_all
else:
if not mems_buffers_on_GPU:
if not mode_stage1:
torch.cuda.empty_cache()
for idx, mem in enumerate(mems):
mems[idx] = mem.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, mem in enumerate(guider_mems):
guider_mems[idx] = mem.to(next(model.parameters()).device)
else:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(
next(model.parameters()).device
)
mems = [
mems_buffers[id][:, :, : mems_indexs[id]] for id in range(2)
]
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(
next(model.parameters()).device
)
guider_mems = [
guider_mems_buffers[id][:, :, : guider_mems_indexs[id]]
for id in range(2)
]
mems_buffers_on_GPU = True
logits, *output_per_layers = model(
input_tokens[:, index:],
position_ids[..., index : counter + 1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args,
)
mem_kv0, mem_kv1 = [o["mem_kv"][0] for o in output_per_layers], [
o["mem_kv"][1] for o in output_per_layers
]
if guider_seq is not None:
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[:, max(index - guider_index_delta, 0) :],
guider_position_ids[
...,
max(index - guider_index_delta, 0) : counter
+ 1
- guider_index_delta,
],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter - guider_index_delta,
log_text_attention_weights=0,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args,
)
guider_mem_kv0, guider_mem_kv1 = [
o["mem_kv"][0] for o in guider_output_per_layers
], [o["mem_kv"][1] for o in guider_output_per_layers]
if not mems_buffers_on_GPU:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(
next(model.parameters()).device
)
mems_buffers_on_GPU = True
mems, mems_indexs = my_update_mems(
[mem_kv0, mem_kv1],
mems_buffers,
mems_indexs,
limited_spatial_channel_mem,
text_len,
frame_len,
)
if guider_seq is not None:
guider_mems, guider_mems_indexs = my_update_mems(
[guider_mem_kv0, guider_mem_kv1],
guider_mems_buffers,
guider_mems_indexs,
limited_spatial_channel_mem,
guider_text_len,
frame_len,
)
counter += 1
index = counter
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
tokens = tokens.expand(batch_size, -1)
if guider_seq is not None:
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
guider_tokens = guider_tokens.expand(batch_size, -1)
if seq[-1][counter].item() < 0:
# sampling
guided_logits = (
guider_logits + (logits - guider_logits) * guidance_alpha
if guider_seq is not None
else logits
)
if mode_stage1 and counter < text_len + 400:
tokens, mems = strategy.forward(guided_logits, tokens, mems)
else:
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
if seq[0][counter].item() >= 0:
for si in range(seq.shape[0]):
if seq[si][counter].item() >= 0:
tokens[si, -1] = seq[si, counter]
if guider_seq is not None:
guider_tokens[si, -1] = guider_seq[
si, counter - guider_index_delta
]
else:
tokens = torch.cat(
(
tokens,
seq[:, counter : counter + 1]
.clone()
.expand(tokens.shape[0], 1)
.to(device=tokens.device, dtype=tokens.dtype),
),
dim=1,
)
if guider_seq is not None:
guider_tokens = torch.cat(
(
guider_tokens,
guider_seq[
:,
counter
- guider_index_delta : counter
+ 1
- guider_index_delta,
]
.clone()
.expand(guider_tokens.shape[0], 1)
.to(device=guider_tokens.device, dtype=guider_tokens.dtype),
),
dim=1,
)
input_tokens = tokens.clone()
if guider_seq is not None:
guider_input_tokens = guider_tokens.clone()
if (index - text_len - 1) // 400 < (
input_tokens.shape[-1] - text_len - 1
) // 400:
boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len
while boi_idx < input_tokens.shape[-1]:
input_tokens[:, boi_idx] = tokenizer["<start_of_image>"]
if guider_seq is not None:
guider_input_tokens[:, boi_idx - guider_index_delta] = tokenizer[
"<start_of_image>"
]
boi_idx += 400
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
class InferenceModel_Sequential(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(
args,
transformer=transformer,
parallel_output=parallel_output,
window_size=-1,
cogvideo_stage=1,
)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(
logits_parallel.float(),
self.transformer.word_embeddings.weight[:20000].float(),
)
return logits_parallel
class InferenceModel_Interpolate(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(
args,
transformer=transformer,
parallel_output=parallel_output,
window_size=10,
cogvideo_stage=2,
)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(
logits_parallel.float(),
self.transformer.word_embeddings.weight[:20000].float(),
)
return logits_parallel
def main(args):
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1
rank_id = args.device % args.parallel_size
generate_frame_num = args.generate_frame_num
if args.stage_1 or args.both_stages:
model_stage1, args = InferenceModel_Sequential.from_pretrained(
args, "cogvideo-stage1"
)
model_stage1.eval()
if args.both_stages:
model_stage1 = model_stage1.cpu()
if args.stage_2 or args.both_stages:
model_stage2, args = InferenceModel_Interpolate.from_pretrained(
args, "cogvideo-stage2"
)
model_stage2.eval()
if args.both_stages:
model_stage2 = model_stage2.cpu()
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
strategy_cogview2 = CoglmStrategy(invalid_slices, temperature=1.0, top_k=16)
strategy_cogvideo = CoglmStrategy(
invalid_slices,
temperature=args.temperature,
top_k=args.top_k,
temperature2=args.coglm_temperature2,
)
if not args.stage_1:
from sr_pipeline import DirectSuperResolution
dsr_path = auto_create(
"cogview2-dsr", path=None
) # path=os.getenv('SAT_HOME', '~/.sat_models')
dsr = DirectSuperResolution(args, dsr_path, max_bz=12, onCUDA=False)
def process_stage2(
model,
seq_text,
duration,
video_raw_text=None,
video_guidance_text="视频",
parent_given_tokens=None,
conddir=None,
outputdir=None,
gpu_rank=0,
gpu_parallel_size=1,
):
stage2_starttime = time.time()
use_guidance = args.use_guidance_stage2
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage-2 model to cuda")
model = model.cuda()
logging.debug(
"moving in stage-2 model takes time: {:.2f}".format(
time.time() - move_start_time
)
)
try:
if parent_given_tokens is None:
assert conddir is not None
parent_given_tokens = torch.load(
os.path.join(conddir, "frame_tokens.pt"), map_location="cpu"
)
sample_num_allgpu = parent_given_tokens.shape[0]
sample_num = sample_num_allgpu // gpu_parallel_size
assert sample_num * gpu_parallel_size == sample_num_allgpu
parent_given_tokens = parent_given_tokens[
gpu_rank * sample_num : (gpu_rank + 1) * sample_num
]
except:
logging.critical("No frame_tokens found in interpolation, skip")
return False
# CogVideo Stage2 Generation
while (
duration >= 0.5
): # TODO: You can change the boundary to change the frame rate
parent_given_tokens_num = parent_given_tokens.shape[1]
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2
generate_batchsize_total = generate_batchsize_persample * sample_num
total_frames = generate_frame_num
frame_len = 400
enc_text = tokenizer.encode(seq_text)
enc_duration = tokenizer.encode(str(float(duration)) + "秒")
seq = (
enc_duration
+ [tokenizer["<n>"]]
+ enc_text
+ [tokenizer["<start_of_image>"]]
+ [-1] * 400 * generate_frame_num
)
text_len = len(seq) - frame_len * generate_frame_num - 1
logging.info(
"[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(
int(4 / duration), tokenizer.decode(enc_text)
)
)
# generation
seq = (
torch.cuda.LongTensor(seq, device=args.device)
.unsqueeze(0)
.repeat(generate_batchsize_total, 1)
)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
seq[sample_i * generate_batchsize_persample + i][
text_len + 1 : text_len + 1 + 400
] = parent_given_tokens[sample_i][2 * i]
seq[sample_i * generate_batchsize_persample + i][
text_len + 1 + 400 : text_len + 1 + 800
] = parent_given_tokens[sample_i][2 * i + 1]
seq[sample_i * generate_batchsize_persample + i][
text_len + 1 + 800 : text_len + 1 + 1200
] = parent_given_tokens[sample_i][2 * i + 2]
if use_guidance:
guider_seq = (
enc_duration
+ [tokenizer["<n>"]]
+ tokenizer.encode(video_guidance_text)
+ [tokenizer["<start_of_image>"]]
+ [-1] * 400 * generate_frame_num
)
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1
guider_seq = (
torch.cuda.LongTensor(guider_seq, device=args.device)
.unsqueeze(0)
.repeat(generate_batchsize_total, 1)
)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
guider_seq[sample_i * generate_batchsize_persample + i][
text_len + 1 : text_len + 1 + 400
] = parent_given_tokens[sample_i][2 * i]
guider_seq[sample_i * generate_batchsize_persample + i][
text_len + 1 + 400 : text_len + 1 + 800
] = parent_given_tokens[sample_i][2 * i + 1]
guider_seq[sample_i * generate_batchsize_persample + i][
text_len + 1 + 800 : text_len + 1 + 1200
] = parent_given_tokens[sample_i][2 * i + 2]
video_log_text_attention_weights = 0
else:
guider_seq = None
guider_text_len = 0
video_log_text_attention_weights = 1.4
mbz = args.max_inference_batch_size
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
output_list = []
start_time = time.time()
for tim in range(max(generate_batchsize_total // mbz, 1)):
input_seq = (
seq[: min(generate_batchsize_total, mbz)].clone()
if tim == 0
else seq[mbz * tim : mbz * (tim + 1)].clone()
)
guider_seq2 = (
(
guider_seq[: min(generate_batchsize_total, mbz)].clone()
if tim == 0
else guider_seq[mbz * tim : mbz * (tim + 1)].clone()
)
if guider_seq is not None
else None
)
output_list.append(
my_filling_sequence(
model,
args,
input_seq,
batch_size=min(generate_batchsize_total, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
text_len=text_len,
frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
mode_stage1=False,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
)[0]
)
logging.info(
"Duration {:.2f}, Taken time {:.2f}\n".format(
duration, time.time() - start_time
)
)
output_tokens = torch.cat(output_list, dim=0)
output_tokens = output_tokens[
:, text_len + 1 : text_len + 1 + (total_frames) * 400
].reshape(sample_num, -1, 400 * total_frames)
output_tokens_merge = torch.cat(
(
output_tokens[:, :, : 1 * 400],
output_tokens[:, :, 400 * 3 : 4 * 400],
output_tokens[:, :, 400 * 1 : 2 * 400],
output_tokens[:, :, 400 * 4 : (total_frames) * 400],
),
dim=2,
).reshape(sample_num, -1, 400)
output_tokens_merge = torch.cat(
(output_tokens_merge, output_tokens[:, -1:, 400 * 2 : 3 * 400]), dim=1
)
duration /= 2
parent_given_tokens = output_tokens_merge
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 2 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug(
"moving out model2 takes time: {:.2f}".format(
time.time() - move_start_time
)
)
logging.info(
"CogVideo Stage2 completed. Taken time {:.2f}\n".format(
time.time() - stage2_starttime
)
)
# decoding
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
# os.makedirs(output_dir_full_path, exist_ok=True)
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False)
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt'))
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2")
# direct super-resolution by CogView2
logging.info("[Direct super-resolution]")
dsr_starttime = time.time()
enc_text = tokenizer.encode(seq_text)
frame_num_per_sample = parent_given_tokens.shape[1]
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
text_seq = (
torch.cuda.LongTensor(enc_text, device=args.device)
.unsqueeze(0)
.repeat(parent_given_tokens_2d.shape[0], 1)
)
sred_tokens = dsr(text_seq, parent_given_tokens_2d)
decoded_sr_videos = []
for sample_i in range(sample_num):
decoded_sr_imgs = []
for frame_i in range(frame_num_per_sample):
decoded_sr_img = tokenizer.decode(
image_ids=sred_tokens[frame_i + sample_i * frame_num_per_sample][
-3600:
]
)
decoded_sr_imgs.append(
torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480))
)
decoded_sr_videos.append(decoded_sr_imgs)
for sample_i in range(sample_num):
my_save_multiple_images(
decoded_sr_videos[sample_i],
outputdir,
subdir=f"frames/{sample_i+sample_num*gpu_rank}",
debug=False,
)
os.system(
f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125"
)
logging.info(
"Direct super-resolution completed. Taken time {:.2f}\n".format(
time.time() - dsr_starttime
)
)
return True
def process_stage1(
model,
seq_text,
duration,
video_raw_text=None,
video_guidance_text="视频",
image_text_suffix="",
outputdir=None,
batch_size=1,
):
process_start_time = time.time()
use_guide = args.use_guidance_stage1
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cuda")
model = model.cuda()
logging.debug(
"moving in model1 takes time: {:.2f}".format(
time.time() - move_start_time
)
)
if video_raw_text is None:
video_raw_text = seq_text
mbz = (
args.stage1_max_inference_batch_size
if args.stage1_max_inference_batch_size > 0
else args.max_inference_batch_size
)
assert batch_size < mbz or batch_size % mbz == 0
frame_len = 400
# generate the first frame:
enc_text = tokenizer.encode(seq_text + image_text_suffix)
seq_1st = (
enc_text + [tokenizer["<start_of_image>"]] + [-1] * 400
) # IV!! # test local!!! # test randboi!!!
logging.info(
"[Generating First Frame with CogView2]Raw text: {:s}".format(
tokenizer.decode(enc_text)
)
)
text_len_1st = len(seq_1st) - frame_len * 1 - 1
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
output_list_1st = []
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
output_list_1st.append(
my_filling_sequence(
model,
args,
seq_1st.clone(),
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len_1st,
frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=1.4,
enforce_no_swin=True,
mode_stage1=True,
)[0]
)
logging.info(
"[First Frame]Taken time {:.2f}\n".format(time.time() - start_time)
)
output_tokens_1st = torch.cat(output_list_1st, dim=0)
given_tokens = output_tokens_1st[
:, text_len_1st + 1 : text_len_1st + 401
].unsqueeze(
1
) # given_tokens.shape: [bs, frame_num, 400]
# generate subsequent frames:
total_frames = generate_frame_num
enc_duration = tokenizer.encode(str(float(duration)) + "秒")
if use_guide:
video_raw_text = video_raw_text + " 视频"
enc_text_video = tokenizer.encode(video_raw_text)
seq = (
enc_duration
+ [tokenizer["<n>"]]
+ enc_text_video
+ [tokenizer["<start_of_image>"]]
+ [-1] * 400 * generate_frame_num
)
guider_seq = (
enc_duration
+ [tokenizer["<n>"]]
+ tokenizer.encode(video_guidance_text)
+ [tokenizer["<start_of_image>"]]
+ [-1] * 400 * generate_frame_num
)
logging.info(
"[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(
4 / duration, tokenizer.decode(enc_text_video)
)
)
text_len = len(seq) - frame_len * generate_frame_num - 1
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1
seq = (
torch.cuda.LongTensor(seq, device=args.device)
.unsqueeze(0)
.repeat(batch_size, 1)
)
guider_seq = (
torch.cuda.LongTensor(guider_seq, device=args.device)
.unsqueeze(0)
.repeat(batch_size, 1)
)
for given_frame_id in range(given_tokens.shape[1]):
seq[
:,
text_len
+ 1
+ given_frame_id * 400 : text_len
+ 1
+ (given_frame_id + 1) * 400,
] = given_tokens[:, given_frame_id]
guider_seq[
:,
guider_text_len
+ 1
+ given_frame_id * 400 : guider_text_len
+ 1
+ (given_frame_id + 1) * 400,
] = given_tokens[:, given_frame_id]
output_list = []
if use_guide:
video_log_text_attention_weights = 0
else:
guider_seq = None
video_log_text_attention_weights = 1.4
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
input_seq = (
seq[: min(batch_size, mbz)].clone()
if tim == 0
else seq[mbz * tim : mbz * (tim + 1)].clone()
)
guider_seq2 = (
(
guider_seq[: min(batch_size, mbz)].clone()
if tim == 0
else guider_seq[mbz * tim : mbz * (tim + 1)].clone()
)
if guider_seq is not None
else None
)
output_list.append(
my_filling_sequence(
model,
args,
input_seq,
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len,
frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
mode_stage1=True,
)[0]
)
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len :]
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug(
"moving in model1 takes time: {:.2f}".format(
time.time() - move_start_time
)
)
# decoding
imgs, sred_imgs, txts = [], [], []
for seq in output_tokens:
decoded_imgs = [
torch.nn.functional.interpolate(
tokenizer.decode(image_ids=seq.tolist()[i * 400 : (i + 1) * 400]),
size=(480, 480),
)
for i in range(total_frames)
]
imgs.append(decoded_imgs) # only the last image (target)
assert len(imgs) == batch_size
save_tokens = (
output_tokens[:, : +total_frames * 400].reshape(-1, total_frames, 400).cpu()
)
if outputdir is not None:
for clip_i in range(len(imgs)):
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
my_save_multiple_images(
imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False
)
os.system(
f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25"
)
torch.save(save_tokens, os.path.join(outputdir, "frame_tokens.pt"))
logging.info(
"CogVideo Stage1 completed. Taken time {:.2f}\n".format(
time.time() - process_start_time
)
)
return save_tokens
# ======================================================================================================
if args.stage_1 or args.both_stages:
if args.input_source != "interactive":
with open(args.input_source, "r") as fin:
promptlist = fin.readlines()
promptlist = [p.strip() for p in promptlist]
else:
promptlist = None
now_qi = -1
while True:
now_qi += 1
if promptlist is not None: # with input-source
if args.multi_gpu:
if now_qi % dist.get_world_size() != dist.get_rank():
continue
rk = dist.get_rank()
else:
rk = 0
raw_text = promptlist[now_qi]
raw_text = raw_text.strip()
print(f"Working on Line No. {now_qi} on {rk}... [{raw_text}]")
else: # interactive
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
raw_text = raw_text.strip()
if not raw_text:
print("Query should not be empty!")
continue
if raw_text == "stop":
return
try:
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}")
parent_given_tokens = process_stage1(
model_stage1,
raw_text,
duration=4.0,
video_raw_text=raw_text,
video_guidance_text="视频",
image_text_suffix=" 高清摄影",
outputdir=path if args.stage_1 else None,
batch_size=args.batch_size,
)
if args.both_stages:
process_stage2(
model_stage2,
raw_text,
duration=2.0,
video_raw_text=raw_text + " 视频",
video_guidance_text="视频",
parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0,
gpu_parallel_size=1,
) # TODO: 修改
except (ValueError, FileNotFoundError) as e:
print(e)
continue
elif args.stage_2:
sample_dirs = os.listdir(args.output_path)
for sample in sample_dirs:
raw_text = sample.split("_")[-1]
path = os.path.join(args.output_path, sample, "Interp")
parent_given_tokens = torch.load(
os.path.join(args.output_path, sample, "frame_tokens.pt")
)
process_stage2(
raw_text,
duration=2.0,
video_raw_text=raw_text + " 视频",
video_guidance_text="视频",
parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0,
gpu_parallel_size=1,
) # TODO: 修改
else:
assert False
if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument("--generate-frame-num", type=int, default=5)
py_parser.add_argument("--coglm-temperature2", type=float, default=0.89)
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成,0是超分,0.5/1/2是插帧
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间
py_parser.add_argument("--use-guidance-stage1", action="store_true")
py_parser.add_argument("--use-guidance-stage2", action="store_true")
py_parser.add_argument("--guidance-alpha", type=float, default=3.0)
py_parser.add_argument(
"--stage-1", action="store_true"
) # stage 1: sequential generation
py_parser.add_argument("--stage-2", action="store_true") # stage 2: interp + dsr
py_parser.add_argument(
"--both-stages", action="store_true"
) # stage 1&2: sequential generation; interp + dsr
py_parser.add_argument("--parallel-size", type=int, default=1)
py_parser.add_argument(
"--stage1-max-inference-batch-size", type=int, default=-1
) # -1: use max-inference-batch-size
py_parser.add_argument("--multi-gpu", action="store_true")
CogVideoCacheModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(",")]
args.do_train = False
torch.cuda.set_device(args.device)
with torch.no_grad():
main(args)