import math import torch from torch import nn import torch.nn.functional as F import numpy as np def nonlinearity(x): return x * torch.sigmoid(x) def Normalize(in_channels): return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if with_conv: self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = F.interpolate(x, scale_factor=2., mode="nearest") if self.with_conv: x = self.conv(x) return x class DownSample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if with_conv: self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = F.pad(x, pad, mode='constant', value=0) x = self.conv(x) else: x = F.avg_pool2d(x, kernel_size=2, stride=2) return x class ResidualDownSample(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.pooling_down_sampler = DownSample(in_channels, with_conv=False) self.conv_down_sampler = DownSample(in_channels, with_conv=True) def forward(self, x): return self.pooling_down_sampler(x) + self.conv_down_sampler(x) class ResnetBlock(nn.Module): def __init__(self, in_channels, dropout, out_channels=None, conv_shortcut=False): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = Normalize(out_channels) self.dropout = nn.Dropout(dropout) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if in_channels != out_channels: if conv_shortcut: self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) B, C, H, W = q.shape q = q.reshape(B, C, -1) q = q.permute(0, 2, 1) # (B, H*W, C) k = k.reshape(B, C, -1) # (B, C, H*W) w_ = torch.bmm(q, k) # (B, H*W, H*W) w_ = w_ * C**(-0.5) w_ = F.softmax(w_, dim=2) v = v.reshape(B, C, -1) # (B, C, H*W) w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(B, C, H, W) h_ = self.proj_out(h_) return x + h_ class Encoder(nn.Module): def __init__(self, in_channels=3, out_channels=3, z_channels=256, channels=128, num_res_blocks=0, resolution=256, attn_resolutions=[16], resample_with_conv=True, channels_mult=(1,2,4,8), dropout=0. ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.z_channels = z_channels self.channels = channels self.num_resolutions = len(channels_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.conv_in = nn.Conv2d(in_channels, channels, kernel_size=3, stride=1, padding=1) current_resolution = resolution in_channels_mult = (1,) + tuple(channels_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = channels * in_channels_mult[i_level] block_out = channels * channels_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=dropout)) block_in = block_out if current_resolution in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = DownSample(block_in, resample_with_conv) current_resolution = current_resolution // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1) def test_forward(self, x): # downsample import pdb hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1]) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) return hs def forward(self, x): # downsample hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1]) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h) h = self.mid.attn_1(h) h = self.mid.block_2(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__(self, in_channels=3, out_channels=3, z_channels=256, channels=128, num_res_blocks=0, resolution=256, attn_resolutions=[16], channels_mult=(1,2,4,8), resample_with_conv=True, dropout=0. ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.z_channels = z_channels self.channels = channels self.num_resolutions = len(channels_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution in_channels_mult = (1,) + tuple(channels_mult) block_in = channels * channels_mult[self.num_resolutions - 1] current_resolution = resolution // 2**(self.num_resolutions - 1) self.z_shape = (1, z_channels, current_resolution, current_resolution) # z to block_in self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = channels * channels_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=dropout)) block_in = block_out if current_resolution in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resample_with_conv) current_resolution = current_resolution * 2 self.up.insert(0, up) # end self.norm_out = Normalize(block_in) self.conv_out = nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1) def forward(self, z): self.last_z_shape = z.shape # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h) h = self.mid.attn_1(h) h = self.mid.block_2(h) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h def get_last_layer(self): return self.conv_out.weight