import numpy as np from PIL import Image import torch import torch.nn.functional as F from typing import List from skimage.metrics import structural_similarity as ssim from skimage import io, color ROUND_DIGIT=3 NUM_ASPECT=5 TEM_SSIM_POINT_HIGH=0.9 TEM_SSIM_POINT_MID=0.75 TEM_SSIM_POINT_LOW=0.6 class MetricSSIM_sim(): def __init__(self) -> None: """ Initialize a class MetricSSIM_sim for testing temporal consistency of a given video. """ None def evaluate(self, frame_list:List[Image.Image]): """ Calculate the SSIM between adjacent frames of a given video to test temporal consistency, then quantize the orginal output based on some predefined thresholds. Args: frame_list:List[Image.Image], frames of the video used in calculation. Returns: ssim_avg: float, the computed SSIM between each adjacent pair of frames and then averaged among all the pairs. quantized_ans: int, the quantized value of the above avg SSIM scores based on pre-defined thresholds. """ ssim_list=[] for f_idx in range(len(frame_list)-1): frame_1=frame_list[f_idx] frame_1_gray=color.rgb2gray(frame_1) frame_2=frame_list[f_idx+1] frame_2_gray=color.rgb2gray(frame_2) ssim_value, _ = ssim(frame_1_gray, frame_2_gray, full=True,\ data_range=frame_2_gray.max() - frame_2_gray.min()) ssim_list.append(ssim_value) ssim_avg=np.mean(ssim_list) quantized_ans=0 if ssim_avg >= TEM_SSIM_POINT_HIGH: quantized_ans=4 elif ssim_avg < TEM_SSIM_POINT_HIGH and ssim_avg >= TEM_SSIM_POINT_MID: quantized_ans=3 elif ssim_avg < TEM_SSIM_POINT_MID and ssim_avg >= TEM_SSIM_POINT_LOW: quantized_ans=2 else: quantized_ans=1 return ssim_avg, quantized_ans