Basaram commited on
Commit
fdcaf62
ยท
verified ยท
1 Parent(s): 97425f9

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +58 -37
src/streamlit_app.py CHANGED
@@ -1,40 +1,61 @@
1
- import altair as alt
2
  import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
+ import joblib
3
  import streamlit as st
4
 
5
+ # Load the trained model
6
+ import os
7
+ model_path = os.path.join(os.path.dirname(__file__), "student_performance_model.h5")
8
+ model = joblib.load(model_path)
9
+
10
+
11
+ def predict_marks(Hours_studied, Previous_Score, Extracurriculum_Activivities, Sleep_Hours, Sample_Question):
12
+ "Predict the student marks based on the input data"
13
+ input_data = np.array([[Hours_studied, Previous_Score, Extracurriculum_Activivities, Sleep_Hours, Sample_Question]])
14
+ prediction = model.predict(input_data)
15
+ prediction = round(float(prediction), 2)
16
+
17
+ # Ensure the prediction does not exceed 100
18
+ if prediction > 100:
19
+ prediction = 100
20
+
21
+ return prediction
22
+
23
+ def main():
24
+ # Sidebar Welcome Note with Emojis
25
+
26
+
27
+ st.title("๐Ÿ“š Student Marks Predictor ๐Ÿ“Š")
28
+
29
+ # Input data
30
+ name = st.text_input("๐Ÿ‘ค Enter your name")
31
+ Hours_studied = st.number_input("๐Ÿ“– Hours you studied", min_value=0.0, max_value=20.0, value=0.0)
32
+ Previous_Score = st.number_input("๐Ÿ“Š Previous exam score", min_value=0, max_value=100, value=0)
33
+ Extracurriculum_Activivities = st.number_input("๐ŸŽญ Extracurricular activities done", min_value=0, max_value=10, value=0)
34
+ Sleep_Hours = st.number_input("๐Ÿ˜ด Hours you slept", min_value=0.0, max_value=12.0, value=0.0)
35
+ Sample_Question = st.number_input("โœ๏ธ Sample questions practiced", min_value=0, max_value=50, value=0)
36
+
37
+ # Sidebar interaction
38
+ st.sidebar.title(f" # Hey {name}")
39
+ st.sidebar.title(f"๐ŸŽ‰Welcome to your Marks Predictor! ๐ŸŽ‰")
40
+ st.sidebar.write("""
41
+ Hey there! Ready to see what your future marks might be? ๐Ÿ˜„
42
+ Remember, I'm here to help you succeed! ๐Ÿ’ช
43
+ """)
44
+
45
+ st.sidebar.markdown("---")
46
+
47
+ # Predict button
48
+ if st.button("๐Ÿ”ฎ Predict Your Marks"):
49
+ prediction = predict_marks(Hours_studied, Previous_Score, Extracurriculum_Activivities, Sleep_Hours, Sample_Question)
50
+
51
+ # Display the predictions
52
+ if prediction >= 90:
53
+ st.balloons()
54
+ st.success(f"๐ŸŒŸ **{name}, amazing!** You're on track to score {prediction} marks! Keep up the excellent work! ๐Ÿ’ช")
55
+ elif prediction >= 35:
56
+ st.warning(f"โš ๏ธ **{name}, not bad!** You're likely to pass with {prediction} marks, but there's room to aim higher! ๐Ÿš€")
57
+ else:
58
+ st.error(f"๐Ÿšจ **{name}, oh no!** You might score below 35 marks. Consider putting in some more effort! ๐Ÿ“š")
59
+
60
+ if __name__ == "__main__":
61
+ main()