Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# ✅ Paths to your hosted models on Hugging Face Hub
|
7 |
+
MODEL_PATHS = [
|
8 |
+
"Basavians/youtube-comment-sentiment-1",
|
9 |
+
"Basavians/youtube-comment-sentiment-2",
|
10 |
+
"Basavians/youtube-comment-sentiment-3"
|
11 |
+
]
|
12 |
+
|
13 |
+
# Load models and tokenizers (once at startup)
|
14 |
+
models = []
|
15 |
+
tokenizers = []
|
16 |
+
for path in MODEL_PATHS:
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(path)
|
19 |
+
model.eval()
|
20 |
+
tokenizers.append(tokenizer)
|
21 |
+
models.append(model)
|
22 |
+
|
23 |
+
# Class labels (update if different)
|
24 |
+
LABELS = ["negative", "neutral", "positive"]
|
25 |
+
|
26 |
+
def predict_sentiment(text):
|
27 |
+
if not text.strip():
|
28 |
+
return "Please enter some text", None
|
29 |
+
|
30 |
+
probs = []
|
31 |
+
for model, tokenizer in zip(models, tokenizers):
|
32 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**inputs)
|
35 |
+
logits = outputs.logits
|
36 |
+
prob = torch.nn.functional.softmax(logits, dim=-1)
|
37 |
+
probs.append(prob.numpy())
|
38 |
+
|
39 |
+
# 🎯 Ensemble by averaging probabilities
|
40 |
+
avg_prob = np.mean(probs, axis=0)
|
41 |
+
pred_class = int(np.argmax(avg_prob, axis=1)[0])
|
42 |
+
pred_label = LABELS[pred_class]
|
43 |
+
confidence = float(avg_prob[0][pred_class])
|
44 |
+
|
45 |
+
return pred_label, {label: float(avg_prob[0][i]) for i, label in enumerate(LABELS)}
|
46 |
+
|
47 |
+
# Gradio UI
|
48 |
+
demo = gr.Interface(
|
49 |
+
fn=predict_sentiment,
|
50 |
+
inputs=gr.Textbox(lines=4, placeholder="Paste a YouTube comment here..."),
|
51 |
+
outputs=[
|
52 |
+
gr.Label(num_top_classes=1, label="Predicted Sentiment"),
|
53 |
+
gr.Label(label="Confidence Scores"),
|
54 |
+
],
|
55 |
+
title="YouTube Comment Sentiment Classifier (Ensemble)",
|
56 |
+
description="Enter a comment to see sentiment prediction based on an ensemble of 3 models."
|
57 |
+
)
|
58 |
+
|
59 |
+
demo.launch()
|