Upload 2 files
Browse files- app.py +133 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import whisper
|
5 |
+
from collections import Counter
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Load models
|
9 |
+
emotion_classifier = pipeline("audio-classification", model="superb/hubert-large-superb-er")
|
10 |
+
whisper_model = whisper.load_model("base")
|
11 |
+
|
12 |
+
# Chart generator
|
13 |
+
def create_emotion_chart(labels, scores):
|
14 |
+
emoji_map = {
|
15 |
+
"hap": "๐ Happy", "sad": "๐ Sad", "neu": "๐ Neutral",
|
16 |
+
"ang": "๐ Angry", "fea": "๐จ Fear", "dis": "๐คข Disgust", "sur": "๐ฎ Surprise"
|
17 |
+
}
|
18 |
+
color_map = {
|
19 |
+
"hap": "#facc15", "sad": "#60a5fa", "neu": "#a1a1aa",
|
20 |
+
"ang": "#ef4444", "fea": "#818cf8", "dis": "#14b8a6", "sur": "#f472b6"
|
21 |
+
}
|
22 |
+
labels = [emoji_map.get(label, label) for label in labels]
|
23 |
+
colors = [color_map.get(label, "#60a5fa") for label in labels]
|
24 |
+
|
25 |
+
fig, ax = plt.subplots(figsize=(5, 3.5))
|
26 |
+
bars = ax.barh(labels, scores, color=colors, edgecolor="black", height=0.5)
|
27 |
+
for bar, score in zip(bars, scores):
|
28 |
+
ax.text(bar.get_width() + 0.02, bar.get_y() + bar.get_height() / 2,
|
29 |
+
f"{score:.2f}", va='center', fontsize=10, color='black')
|
30 |
+
ax.set_xlim(0, 1)
|
31 |
+
ax.set_title("๐ญ Emotion Confidence Scores", fontsize=13, pad=10)
|
32 |
+
ax.invert_yaxis()
|
33 |
+
ax.set_facecolor("#f9fafb")
|
34 |
+
fig.patch.set_facecolor("#f9fafb")
|
35 |
+
for spine in ax.spines.values():
|
36 |
+
spine.set_visible(False)
|
37 |
+
ax.tick_params(axis='x', colors='gray')
|
38 |
+
ax.tick_params(axis='y', colors='gray')
|
39 |
+
return fig
|
40 |
+
|
41 |
+
def generate_next_moves(dominant_emotion, conf_score, transcript=""):
|
42 |
+
suggestions = []
|
43 |
+
harsh_words = ["bad", "ugly", "terrible", "hate", "worst"]
|
44 |
+
positive_tone_negative_words = any(word in transcript.lower() for word in harsh_words) if "happiness" in dominant_emotion else False
|
45 |
+
|
46 |
+
if 'sadness' in dominant_emotion:
|
47 |
+
suggestions.append("Your tone feels low โ try lifting the pitch slightly to bring more warmth.")
|
48 |
+
suggestions.append("Even if the words are positive, a brighter tone helps convey enthusiasm.")
|
49 |
+
elif 'happiness' in dominant_emotion and conf_score >= 80:
|
50 |
+
suggestions.append("Nice energy! Try modulating your tone even more for emphasis in key moments.")
|
51 |
+
suggestions.append("Experiment with subtle emotional shifts as you speak for more depth.")
|
52 |
+
elif 'neutral' in dominant_emotion:
|
53 |
+
suggestions.append("Add inflection to break a monotone pattern โ especially at the ends of sentences.")
|
54 |
+
suggestions.append("Highlight your message by stressing emotionally important words.")
|
55 |
+
elif conf_score < 50:
|
56 |
+
suggestions.append("Try exaggerating vocal ups and downs when reading to unlock more expression.")
|
57 |
+
suggestions.append("Slow down slightly and stretch certain words to vary your delivery.")
|
58 |
+
else:
|
59 |
+
suggestions.append("Keep practicing tone variation โ youโre building a solid base.")
|
60 |
+
|
61 |
+
if positive_tone_negative_words:
|
62 |
+
suggestions.append("Your tone was upbeat, but the word choices were harsh โ aim to align both for better impact.")
|
63 |
+
return "\n- " + "\n- ".join(suggestions)
|
64 |
+
|
65 |
+
def generate_personacoach_report(emotions, transcript):
|
66 |
+
report = "## ๐ Your PersonaCoach Report\n---\n\n"
|
67 |
+
report += "### ๐๏ธ What You Said:\n"
|
68 |
+
report += f"> _{transcript.strip()}_\n\n"
|
69 |
+
|
70 |
+
label_map = {
|
71 |
+
'hap': '๐ happiness', 'sad': '๐ sadness', 'neu': '๐ neutral',
|
72 |
+
'ang': '๐ anger', 'fea': '๐จ fear', 'dis': '๐คข disgust', 'sur': '๐ฎ surprise'
|
73 |
+
}
|
74 |
+
for e in emotions:
|
75 |
+
e['emotion'] = label_map.get(e['label'], e['label'])
|
76 |
+
|
77 |
+
scores = [e['score'] for e in emotions]
|
78 |
+
top_score = max(scores)
|
79 |
+
conf_score = int(top_score * 100)
|
80 |
+
|
81 |
+
emotion_labels = [e['emotion'] for e in emotions if e['score'] >= 0.2]
|
82 |
+
dominant_emotion = emotion_labels[0] if emotion_labels else "neutral"
|
83 |
+
|
84 |
+
report += f"### ๐ฏ Tone Strength:\n- Your tone scored **{conf_score}/100** in clarity.\n\n"
|
85 |
+
report += "### ๐ฃ๏ธ Emotion & Delivery:\n"
|
86 |
+
if emotion_labels:
|
87 |
+
emo_str = ", ".join([f"{e['emotion']} ({e['score']:.2f})" for e in emotions])
|
88 |
+
report += f"- Emotionally, your voice showed: {emo_str}\n"
|
89 |
+
else:
|
90 |
+
report += "- Your tone wasnโt clearly expressive. Try reading with a bit more emphasis or emotion.\n"
|
91 |
+
|
92 |
+
filler_words = ["um", "uh", "like", "you know", "so", "actually", "basically", "literally"]
|
93 |
+
words = transcript.lower().split()
|
94 |
+
total_words = len(words)
|
95 |
+
filler_count = sum(words.count(fw) for fw in filler_words)
|
96 |
+
filler_ratio = filler_count / total_words if total_words > 0 else 0
|
97 |
+
|
98 |
+
report += "\n### ๐ฌ Pausing Style:\n"
|
99 |
+
report += f"- {filler_count} fillers out of {total_words} words.\n"
|
100 |
+
if filler_ratio > 0.06:
|
101 |
+
report += "- Try pausing instead of fillers.\n"
|
102 |
+
elif filler_ratio > 0.03:
|
103 |
+
report += "- A few fillers โ consider tightening up delivery.\n"
|
104 |
+
else:
|
105 |
+
report += "- Strong fluency โ great control.\n"
|
106 |
+
|
107 |
+
report += "\n### ๐งญ Next Moves:\n"
|
108 |
+
report += generate_next_moves(dominant_emotion, conf_score, transcript)
|
109 |
+
return report
|
110 |
+
|
111 |
+
def analyze_audio(audio_path):
|
112 |
+
result = whisper_model.transcribe(audio_path)
|
113 |
+
transcript = result['text']
|
114 |
+
emotion_results = emotion_classifier(audio_path)
|
115 |
+
labels = [r['label'] for r in emotion_results]
|
116 |
+
scores = [r['score'] for r in emotion_results]
|
117 |
+
fig = create_emotion_chart(labels, scores)
|
118 |
+
report = generate_personacoach_report(emotion_results, transcript)
|
119 |
+
return transcript, fig, report
|
120 |
+
|
121 |
+
interface = gr.Interface(
|
122 |
+
fn=analyze_audio,
|
123 |
+
inputs=gr.Audio(type="filepath", label="Upload your voice (.wav only)"),
|
124 |
+
outputs=[
|
125 |
+
gr.Textbox(label="๐ Transcription"),
|
126 |
+
gr.Plot(label="๐ญ Emotion Chart"),
|
127 |
+
gr.Markdown(label="๐ PersonaCoach Feedback")
|
128 |
+
],
|
129 |
+
title="SPEAK โ Speech Performance Evaluation and Affective Knowledge",
|
130 |
+
description="Upload a voice sample and get coaching feedback on tone, emotion, and fluency."
|
131 |
+
)
|
132 |
+
|
133 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
gradio
|
3 |
+
matplotlib
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
librosa
|
7 |
+
openai-whisper
|