Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI | |
from llama_index.core.agent.workflow import AgentWorkflow | |
from llama_index.core.tools import FunctionTool | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self ): | |
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct") | |
self.agent = AgentWorkflow.from_tools_or_functions( | |
[FunctionTool.from_defaults(multiply)], | |
llm=llm | |
) | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
response = self.agent.run(question) | |
return str(response) | |
def multiply(a: int, b: int) -> int: | |
"""Multiplies two integers and returns the resulting integer""" | |
return a * b | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print("Error instantiating agent: " + str(e)) | |
return "Error initializing agent: " + str(e), None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = "https://huggingface.co/spaces/" + str(space_id ) + "/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print("Fetching questions from: " + questions_url) | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print("Fetched " + str(len(questions_data)) + " questions.") | |
except requests.exceptions.RequestException as e: | |
print("Error fetching questions: " + str(e)) | |
return "Error fetching questions: " + str(e), None | |
except requests.exceptions.JSONDecodeError as e: | |
print("Error decoding JSON response from questions endpoint: " + str(e)) | |
print("Response text: " + response.text[:500]) | |
return "Error decoding server response for questions: " + str(e), None | |
except Exception as e: | |
print("An unexpected error occurred fetching questions: " + str(e)) | |
return "An unexpected error occurred fetching questions: " + str(e), None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print("Running agent on " + str(len(questions_data)) + " questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print("Skipping item with missing task_id or question: " + str(item)) | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print("Error running agent on task " + str(task_id) + ": " + str(e)) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": "AGENT ERROR: " + str(e)}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = "Agent finished. Submitting " + str(len(answers_payload)) + " answers for user \'" + username + "\'..." | |
print(status_update) | |
# 5. Submit | |
print("Submitting " + str(len(answers_payload)) + " answers to: " + submit_url) | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
"Submission Successful!\n" + | |
"User: " + str(result_data.get("username")) + "\n" + | |
"Overall Score: " + str(result_data.get("score", "N/A")) + "% " + | |
"(" + str(result_data.get("correct_count", "?")) + "/" + str(result_data.get("total_attempted", "?")) + " correct)\n" + | |
"Message: " + str(result_data.get("message", "No message received.")) | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = "Server responded with status " + str(e.response.status_code) + "." | |
try: | |
error_json = e.response.json() | |
error_detail += " Detail: " + str(error_json.get("detail", e.response.text)) | |
except requests.exceptions.JSONDecodeError: | |
error_detail += " Response: " + e.response.text[:500] | |
status_message = "Submission Failed: " + error_detail | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = "Submission Failed: Network error - " + str(e) | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = "An unexpected error occurred during submission: " + str(e) | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent\\'s logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click \\'Run Evaluation & Submit All Answers\\' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print("✅ SPACE_HOST found: " + space_host_startup) | |
print(" Runtime URL should be: https://" + space_host_startup + ".hf.space" ) | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print("✅ SPACE_ID found: " + space_id_startup) | |
print(" Repo URL: https://huggingface.co/spaces/" + space_id_startup ) | |
print(" Repo Tree URL: https://huggingface.co/spaces/" + space_id_startup + "/tree/main" ) | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |