Berry18 commited on
Commit
4988d06
·
verified ·
1 Parent(s): 5349872

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -208
app.py DELETED
@@ -1,208 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
8
- from llama_index.core.agent.workflow import AgentWorkflow
9
- from llama_index.core.tools import FunctionTool
10
-
11
- # --- Constants ---
12
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
-
14
- # --- Basic Agent Definition ---
15
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
16
- class BasicAgent:
17
- def __init__(self):
18
- llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
19
- self.agent = AgentWorkflow.from_tools_or_functions(
20
- [FunctionTool.from_defaults(multiply)],
21
- llm=llm
22
- )
23
- def __call__(self, question: str) -> str:
24
- print(f"Agent received question (first 50 chars): {question[:50]}...")
25
- response = self.agent.run(question)
26
- return str(response)
27
-
28
- def multiply(a: int, b: int) -> int:
29
- """Multiplies two integers and returns the resulting integer"""
30
- return a * b
31
-
32
- def run_and_submit_all( profile: gr.OAuthProfile | None):
33
- """
34
- Fetches all questions, runs the BasicAgent on them, submits all answers,
35
- and displays the results.
36
- """
37
- # --- Determine HF Space Runtime URL and Repo URL ---
38
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
39
-
40
- if profile:
41
- username= f"{profile.username}"
42
- print(f"User logged in: {username}")
43
- else:
44
- print("User not logged in.")
45
- return "Please Login to Hugging Face with the button.", None
46
-
47
- api_url = DEFAULT_API_URL
48
- questions_url = f"{api_url}/questions"
49
- submit_url = f"{api_url}/submit"
50
-
51
- # 1. Instantiate Agent ( modify this part to create your agent)
52
- try:
53
- agent = BasicAgent()
54
- except Exception as e:
55
- print(f"Error instantiating agent: {e}")
56
- return f"Error initializing agent: {e}", None
57
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
58
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
- print(agent_code)
60
-
61
- # 2. Fetch Questions
62
- print(f"Fetching questions from: {questions_url}")
63
- try:
64
- response = requests.get(questions_url, timeout=15)
65
- response.raise_for_status()
66
- questions_data = response.json()
67
- if not questions_data:
68
- print("Fetched questions list is empty.")
69
- return "Fetched questions list is empty or invalid format.", None
70
- print(f"Fetched {len(questions_data)} questions.")
71
- except requests.exceptions.RequestException as e:
72
- print(f"Error fetching questions: {e}")
73
- return f"Error fetching questions: {e}", None
74
- except requests.exceptions.JSONDecodeError as e:
75
- print(f"Error decoding JSON response from questions endpoint: {e}")
76
- print(f"Response text: {response.text[:500]}")
77
- return f"Error decoding server response for questions: {e}", None
78
- except Exception as e:
79
- print(f"An unexpected error occurred fetching questions: {e}")
80
- return f"An unexpected error occurred fetching questions: {e}", None
81
-
82
- # 3. Run your Agent
83
- results_log = []
84
- answers_payload = []
85
- print(f"Running agent on {len(questions_data)} questions...")
86
- for item in questions_data:
87
- task_id = item.get("task_id")
88
- question_text = item.get("question")
89
- if not task_id or question_text is None:
90
- print(f"Skipping item with missing task_id or question: {item}")
91
- continue
92
- try:
93
- submitted_answer = agent(question_text)
94
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
95
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
96
- except Exception as e:
97
- print(f"Error running agent on task {task_id}: {e}")
98
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
99
-
100
- if not answers_payload:
101
- print("Agent did not produce any answers to submit.")
102
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
103
-
104
- # 4. Prepare Submission
105
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
106
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user \'{username}\'..."
107
- print(status_update)
108
-
109
- # 5. Submit
110
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
111
- try:
112
- response = requests.post(submit_url, json=submission_data, timeout=60)
113
- response.raise_for_status()
114
- result_data = response.json()
115
- final_status = (
116
- f"Submission Successful!\n" +
117
- f"User: {result_data.get(\'username\')}\n" +
118
- f"Overall Score: {result_data.get(\'score\', \'N/A\')}% " +
119
- f"({result_data.get(\'correct_count\', \'?\')}/{result_data.get(\'total_attempted\', \'?\')} correct)\n" +
120
- f"Message: {result_data.get(\'message\', \'No message received.\')}"
121
- )
122
- print("Submission successful.")
123
- results_df = pd.DataFrame(results_log)
124
- return final_status, results_df
125
- except requests.exceptions.HTTPError as e:
126
- error_detail = f"Server responded with status {e.response.status_code}."
127
- try:
128
- error_json = e.response.json()
129
- error_detail += f" Detail: {error_json.get(\'detail\', e.response.text)}"
130
- except requests.exceptions.JSONDecodeError:
131
- error_detail += f" Response: {e.response.text[:500]}"
132
- status_message = f"Submission Failed: {error_detail}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except requests.exceptions.Timeout:
137
- status_message = "Submission Failed: The request timed out."
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
- except requests.exceptions.RequestException as e:
142
- status_message = f"Submission Failed: Network error - {e}"
143
- print(status_message)
144
- results_df = pd.DataFrame(results_log)
145
- return status_message, results_df
146
- except Exception as e:
147
- status_message = f"An unexpected error occurred during submission: {e}"
148
- print(status_message)
149
- results_df = pd.DataFrame(results_log)
150
- return status_message, results_df
151
-
152
-
153
- # --- Build Gradio Interface using Blocks ---
154
- with gr.Blocks() as demo:
155
- gr.Markdown("# Basic Agent Evaluation Runner")
156
- gr.Markdown(
157
- """
158
- **Instructions:**
159
-
160
- 1. Please clone this space, then modify the code to define your agent\'s logic, the tools, the necessary packages, etc ...
161
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
162
- 3. Click \'Run Evaluation & Submit All Answers\' to fetch questions, run your agent, submit answers, and see the score.
163
-
164
- ---
165
- **Disclaimers:**
166
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
167
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
168
- """
169
- )
170
-
171
- gr.LoginButton()
172
-
173
- run_button = gr.Button("Run Evaluation & Submit All Answers")
174
-
175
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
176
- # Removed max_rows=10 from DataFrame constructor
177
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
178
-
179
- run_button.click(
180
- fn=run_and_submit_all,
181
- outputs=[status_output, results_table]
182
- )
183
-
184
- if __name__ == "__main__":
185
- print("\n" + "-"*30 + " App Starting " + "-"*30)
186
- # Check for SPACE_HOST and SPACE_ID at startup for information
187
- space_host_startup = os.getenv("SPACE_HOST")
188
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
189
-
190
- if space_host_startup:
191
- print(f"✅ SPACE_HOST found: {space_host_startup}")
192
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
193
- else:
194
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
195
-
196
- if space_id_startup: # Print repo URLs if SPACE_ID is found
197
- print(f"✅ SPACE_ID found: {space_id_startup}")
198
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
199
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
200
- else:
201
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
202
-
203
- print("-"*(60 + len(" App Starting ")) + "\n")
204
-
205
- print("Launching Gradio Interface for Basic Agent Evaluation...")
206
- demo.launch(debug=True, share=False)
207
-
208
-