Berry18 commited on
Commit
bc84cb2
·
verified ·
1 Parent(s): e24a228

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -207
app.py DELETED
@@ -1,207 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
8
- from llama_index.core.agent.workflow import AgentWorkflow
9
- from llama_index.core.tools import FunctionTool
10
-
11
- # --- Constants ---
12
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
-
14
- # --- Basic Agent Definition ---
15
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
16
- class BasicAgent:
17
- def __init__(self ):
18
- llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
19
- self.agent = AgentWorkflow.from_tools_or_functions(
20
- [FunctionTool.from_defaults(multiply)],
21
- llm=llm
22
- )
23
- def __call__(self, question: str) -> str:
24
- print(f"Agent received question (first 50 chars): {question[:50]}...")
25
- response = self.agent.run(question)
26
- return str(response)
27
-
28
- def multiply(a: int, b: int) -> int:
29
- """Multiplies two integers and returns the resulting integer"""
30
- return a * b
31
-
32
- def run_and_submit_all( profile: gr.OAuthProfile | None):
33
- """
34
- Fetches all questions, runs the BasicAgent on them, submits all answers,
35
- and displays the results.
36
- """
37
- # --- Determine HF Space Runtime URL and Repo URL ---
38
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
39
-
40
- if profile:
41
- username= f"{profile.username}"
42
- print(f"User logged in: {username}")
43
- else:
44
- print("User not logged in.")
45
- return "Please Login to Hugging Face with the button.", None
46
-
47
- api_url = DEFAULT_API_URL
48
- questions_url = f"{api_url}/questions"
49
- submit_url = f"{api_url}/submit"
50
-
51
- # 1. Instantiate Agent ( modify this part to create your agent)
52
- try:
53
- agent = BasicAgent()
54
- except Exception as e:
55
- print(f"Error instantiating agent: {e}")
56
- return f"Error initializing agent: {e}", None
57
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
58
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
- print(agent_code )
60
-
61
- # 2. Fetch Questions
62
- print(f"Fetching questions from: {questions_url}")
63
- try:
64
- response = requests.get(questions_url, timeout=15)
65
- response.raise_for_status()
66
- questions_data = response.json()
67
- if not questions_data:
68
- print("Fetched questions list is empty.")
69
- return "Fetched questions list is empty or invalid format.", None
70
- print(f"Fetched {len(questions_data)} questions.")
71
- except requests.exceptions.RequestException as e:
72
- print(f"Error fetching questions: {e}")
73
- return f"Error fetching questions: {e}", None
74
- except requests.exceptions.JSONDecodeError as e:
75
- print(f"Error decoding JSON response from questions endpoint: {e}")
76
- print(f"Response text: {response.text[:500]}")
77
- return f"Error decoding server response for questions: {e}", None
78
- except Exception as e:
79
- print(f"An unexpected error occurred fetching questions: {e}")
80
- return f"An unexpected error occurred fetching questions: {e}", None
81
-
82
- # 3. Run your Agent
83
- results_log = []
84
- answers_payload = []
85
- print(f"Running agent on {len(questions_data)} questions...")
86
- for item in questions_data:
87
- task_id = item.get("task_id")
88
- question_text = item.get("question")
89
- if not task_id or question_text is None:
90
- print(f"Skipping item with missing task_id or question: {item}")
91
- continue
92
- try:
93
- submitted_answer = agent(question_text)
94
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
95
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
96
- except Exception as e:
97
- print(f"Error running agent on task {task_id}: {e}")
98
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
99
-
100
- if not answers_payload:
101
- print("Agent did not produce any answers to submit.")
102
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
103
-
104
- # 4. Prepare Submission
105
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
106
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user \'{username}\'..."
107
- print(status_update)
108
-
109
- # 5. Submit
110
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
111
- try:
112
- response = requests.post(submit_url, json=submission_data, timeout=60)
113
- response.raise_for_status()
114
- result_data = response.json()
115
- final_status = (
116
- "Submission Successful!\n" +
117
- "User: " + str(result_data.get("username")) + "\n" +
118
- "Overall Score: " + str(result_data.get("score", "N/A")) + "% " +
119
- "(" + str(result_data.get("correct_count", "?")) + "/" + str(result_data.get("total_attempted", "?")) + " correct)\n" +
120
- "Message: " + str(result_data.get("message", "No message received."))
121
- )
122
-
123
- print("Submission successful.")
124
- results_df = pd.DataFrame(results_log)
125
- return final_status, results_df
126
- except requests.exceptions.HTTPError as e:
127
- error_detail = f"Server responded with status {e.response.status_code}."
128
- try:
129
- error_json = e.response.json()
130
- error_detail += f" Detail: {error_json.get(\'detail\', e.response.text)}"
131
- except requests.exceptions.JSONDecodeError:
132
- error_detail += f" Response: {e.response.text[:500]}"
133
- status_message = f"Submission Failed: {error_detail}"
134
- print(status_message)
135
- results_df = pd.DataFrame(results_log)
136
- return status_message, results_df
137
- except requests.exceptions.Timeout:
138
- status_message = "Submission Failed: The request timed out."
139
- print(status_message)
140
- results_df = pd.DataFrame(results_log)
141
- return status_message, results_df
142
- except requests.exceptions.RequestException as e:
143
- status_message = f"Submission Failed: Network error - {e}"
144
- print(status_message)
145
- results_df = pd.DataFrame(results_log)
146
- return status_message, results_df
147
- except Exception as e:
148
- status_message = f"An unexpected error occurred during submission: {e}"
149
- print(status_message)
150
- results_df = pd.DataFrame(results_log)
151
- return status_message, results_df
152
-
153
-
154
- # --- Build Gradio Interface using Blocks ---
155
- with gr.Blocks() as demo:
156
- gr.Markdown("# Basic Agent Evaluation Runner")
157
- gr.Markdown(
158
- """
159
- **Instructions:**
160
-
161
- 1. Please clone this space, then modify the code to define your agent\'s logic, the tools, the necessary packages, etc ...
162
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
163
- 3. Click \'Run Evaluation & Submit All Answers\' to fetch questions, run your agent, submit answers, and see the score.
164
-
165
- ---
166
- **Disclaimers:**
167
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
169
- """
170
- )
171
-
172
- gr.LoginButton()
173
-
174
- run_button = gr.Button("Run Evaluation & Submit All Answers")
175
-
176
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
- # Removed max_rows=10 from DataFrame constructor
178
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
-
180
- run_button.click(
181
- fn=run_and_submit_all,
182
- outputs=[status_output, results_table]
183
- )
184
-
185
- if __name__ == "__main__":
186
- print("\n" + "-"*30 + " App Starting " + "-"*30)
187
- # Check for SPACE_HOST and SPACE_ID at startup for information
188
- space_host_startup = os.getenv("SPACE_HOST")
189
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
-
191
- if space_host_startup:
192
- print(f"✅ SPACE_HOST found: {space_host_startup}")
193
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space" )
194
- else:
195
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
-
197
- if space_id_startup: # Print repo URLs if SPACE_ID is found
198
- print(f"✅ SPACE_ID found: {space_id_startup}")
199
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}" )
200
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" )
201
- else:
202
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
-
204
- print("-"*(60 + len(" App Starting ")) + "\n")
205
-
206
- print("Launching Gradio Interface for Basic Agent Evaluation...")
207
- demo.launch(debug=True, share=False)