Uploaded 3 files
Browse files- app.py +1323 -0
- startup.sh +27 -0
- supervisord.conf +16 -0
app.py
ADDED
@@ -0,0 +1,1323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
from ultralytics import YOLO
|
7 |
+
from datetime import datetime
|
8 |
+
from gtts import gTTS
|
9 |
+
import tempfile
|
10 |
+
import os
|
11 |
+
import base64
|
12 |
+
import ollama
|
13 |
+
import bcrypt
|
14 |
+
import sqlite3
|
15 |
+
import time
|
16 |
+
from deep_translator import GoogleTranslator
|
17 |
+
#from transformers import AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor, pipeline
|
18 |
+
#import torch
|
19 |
+
#from huggingface_hub import from_pretrained_keras
|
20 |
+
import requests
|
21 |
+
|
22 |
+
# Database setup
|
23 |
+
conn = sqlite3.connect('users.db')
|
24 |
+
c = conn.cursor()
|
25 |
+
c.execute('''CREATE TABLE IF NOT EXISTS users
|
26 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
27 |
+
username TEXT UNIQUE,
|
28 |
+
password_hash TEXT)''')
|
29 |
+
conn.commit()
|
30 |
+
|
31 |
+
# Password hashing and verification
|
32 |
+
def hash_password(password):
|
33 |
+
return bcrypt.hashpw(password.encode(), bcrypt.gensalt())
|
34 |
+
|
35 |
+
def verify_password(password, hashed_password):
|
36 |
+
return bcrypt.checkpw(password.encode(), hashed_password)
|
37 |
+
|
38 |
+
# Add a user
|
39 |
+
def add_user(username, password):
|
40 |
+
# Check if username already exists
|
41 |
+
c.execute("SELECT id FROM users WHERE username = ?", (username,))
|
42 |
+
result = c.fetchone()
|
43 |
+
|
44 |
+
if result:
|
45 |
+
return False # Username already exists
|
46 |
+
|
47 |
+
# Hash the password and insert the new user
|
48 |
+
password_hash = hash_password(password)
|
49 |
+
c.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)",
|
50 |
+
(username, password_hash))
|
51 |
+
conn.commit()
|
52 |
+
|
53 |
+
return True
|
54 |
+
|
55 |
+
# Verify a user
|
56 |
+
def verify_user(username, password):
|
57 |
+
c.execute("SELECT password_hash FROM users WHERE username = ?", (username,))
|
58 |
+
result = c.fetchone()
|
59 |
+
if result:
|
60 |
+
return verify_password(password, result[0])
|
61 |
+
return False
|
62 |
+
|
63 |
+
# Login and logout
|
64 |
+
def login(username, password):
|
65 |
+
if not username or not password:
|
66 |
+
st.error("Username and password are required.")
|
67 |
+
return False
|
68 |
+
if verify_user(username, password):
|
69 |
+
st.session_state['authenticated'] = True
|
70 |
+
st.session_state['username'] = username
|
71 |
+
st.session_state['last_activity'] = time.time()
|
72 |
+
return True
|
73 |
+
st.error("Invalid username or password.")
|
74 |
+
return False
|
75 |
+
|
76 |
+
def logout():
|
77 |
+
st.session_state['authenticated'] = False
|
78 |
+
st.session_state['username'] = None
|
79 |
+
|
80 |
+
# Add this at the top of your file
|
81 |
+
def local_css():
|
82 |
+
st.markdown("""
|
83 |
+
<style>
|
84 |
+
.stButton>button {
|
85 |
+
width: 100%;
|
86 |
+
border-radius: 5px;
|
87 |
+
height: 3em;
|
88 |
+
margin-top: 10px;
|
89 |
+
}
|
90 |
+
|
91 |
+
.auth-container {
|
92 |
+
max-width: 400px;
|
93 |
+
margin: auto;
|
94 |
+
padding: 20px;
|
95 |
+
border-radius: 10px;
|
96 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
97 |
+
background-color: white;
|
98 |
+
}
|
99 |
+
|
100 |
+
.auth-title {
|
101 |
+
text-align: center;
|
102 |
+
font-size: 24px;
|
103 |
+
margin-bottom: 20px;
|
104 |
+
color: #1f1f1f;
|
105 |
+
}
|
106 |
+
|
107 |
+
.auth-subtitle {
|
108 |
+
text-align: center;
|
109 |
+
font-size: 16px;
|
110 |
+
margin-bottom: 20px;
|
111 |
+
color: #666;
|
112 |
+
}
|
113 |
+
|
114 |
+
.hero-section {
|
115 |
+
text-align: center;
|
116 |
+
padding: 40px 20px;
|
117 |
+
background: linear-gradient(to right, #4f46e5, #3b82f6);
|
118 |
+
color: white;
|
119 |
+
margin-bottom: 30px;
|
120 |
+
}
|
121 |
+
|
122 |
+
.feature-container {
|
123 |
+
max-width: 1200px;
|
124 |
+
margin: auto;
|
125 |
+
padding: 20px;
|
126 |
+
display: grid;
|
127 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
128 |
+
gap: 20px;
|
129 |
+
margin-bottom: 40px;
|
130 |
+
}
|
131 |
+
|
132 |
+
.feature-card {
|
133 |
+
background: white;
|
134 |
+
padding: 20px;
|
135 |
+
border-radius: 10px;
|
136 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
137 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
138 |
+
}
|
139 |
+
|
140 |
+
.feature-card:hover {
|
141 |
+
transform: scale(1.05);
|
142 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
143 |
+
}
|
144 |
+
|
145 |
+
.feature-title {
|
146 |
+
color: #1f1f1f;
|
147 |
+
font-size: 18px;
|
148 |
+
margin-bottom: 10px;
|
149 |
+
font-weight: bold;
|
150 |
+
}
|
151 |
+
|
152 |
+
.feature-text {
|
153 |
+
color: #666;
|
154 |
+
font-size: 14px;
|
155 |
+
}
|
156 |
+
|
157 |
+
.divider {
|
158 |
+
text-align: center;
|
159 |
+
margin: 20px 0;
|
160 |
+
position: relative;
|
161 |
+
}
|
162 |
+
|
163 |
+
.divider:before {
|
164 |
+
content: "";
|
165 |
+
position: absolute;
|
166 |
+
top: 50%;
|
167 |
+
left: 0;
|
168 |
+
right: 0;
|
169 |
+
height: 1px;
|
170 |
+
background-color: #e0e0e0;
|
171 |
+
z-index: -1;
|
172 |
+
}
|
173 |
+
|
174 |
+
.divider span {
|
175 |
+
background-color: white;
|
176 |
+
padding: 0 10px;
|
177 |
+
color: #666;
|
178 |
+
font-size: 14px;
|
179 |
+
}
|
180 |
+
|
181 |
+
@keyframes typing {
|
182 |
+
0% {
|
183 |
+
width: 0;
|
184 |
+
}
|
185 |
+
50% {
|
186 |
+
width: 100%;
|
187 |
+
}
|
188 |
+
60% {
|
189 |
+
width: 100%;
|
190 |
+
}
|
191 |
+
100% {
|
192 |
+
width: 0;
|
193 |
+
}
|
194 |
+
}
|
195 |
+
|
196 |
+
@keyframes blink {
|
197 |
+
50% {
|
198 |
+
border-color: transparent;
|
199 |
+
}
|
200 |
+
}
|
201 |
+
|
202 |
+
.hero-title{
|
203 |
+
display: inline-block;
|
204 |
+
font-size: 2.5em;
|
205 |
+
white-space: nowrap;
|
206 |
+
overflow: hidden;
|
207 |
+
border-right: 2px solid white;
|
208 |
+
width: 0;
|
209 |
+
animation: typing 6s steps(40, end) infinite, blink 0.5s step-end infinite;
|
210 |
+
}
|
211 |
+
|
212 |
+
.hero-section {
|
213 |
+
text-align: center;
|
214 |
+
padding: 40px 20px;
|
215 |
+
background: linear-gradient(45deg, #4f46e5, #3b82f6);
|
216 |
+
background-size: 300% 300%;
|
217 |
+
animation: gradientShift 8s ease infinite;
|
218 |
+
color: white;
|
219 |
+
margin-bottom: 30px;
|
220 |
+
opacity: 0;
|
221 |
+
animation: fadeIn 2s ease-in-out forwards;
|
222 |
+
}
|
223 |
+
|
224 |
+
@keyframes fadeIn {
|
225 |
+
from {
|
226 |
+
opacity: 0;
|
227 |
+
}
|
228 |
+
to {
|
229 |
+
opacity: 1;
|
230 |
+
}
|
231 |
+
}
|
232 |
+
|
233 |
+
@keyframes gradientShift {
|
234 |
+
0% {
|
235 |
+
background-position: 0% 50%;
|
236 |
+
}
|
237 |
+
50% {
|
238 |
+
background-position: 100% 50%;
|
239 |
+
}
|
240 |
+
100% {
|
241 |
+
background-position: 0% 50%;
|
242 |
+
}
|
243 |
+
}
|
244 |
+
|
245 |
+
/*.feature-container {
|
246 |
+
display: flex;
|
247 |
+
justify-content: center;
|
248 |
+
align-items: center;
|
249 |
+
gap: 20px;
|
250 |
+
position: relative;
|
251 |
+
width: 100%;
|
252 |
+
height: 300px;
|
253 |
+
animation: rotate 20s linear infinite; /* Rotate the container */
|
254 |
+
}
|
255 |
+
|
256 |
+
.feature-card {
|
257 |
+
background: white;
|
258 |
+
padding: 20px;
|
259 |
+
border-radius: 10px;
|
260 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
261 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
262 |
+
flex-shrink: 0;
|
263 |
+
width: 250px;
|
264 |
+
}
|
265 |
+
|
266 |
+
.feature-card:hover {
|
267 |
+
transform: scale(1.1);
|
268 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
269 |
+
}
|
270 |
+
|
271 |
+
@keyframes rotate {
|
272 |
+
from {
|
273 |
+
transform: rotate(0deg);
|
274 |
+
}
|
275 |
+
to {
|
276 |
+
transform: rotate(-360deg);
|
277 |
+
}
|
278 |
+
*/}
|
279 |
+
|
280 |
+
/*.feature-container {
|
281 |
+
display: flex;
|
282 |
+
justify-content: center;
|
283 |
+
align-items: center;
|
284 |
+
overflow: hidden;
|
285 |
+
position: relative;
|
286 |
+
width: 100%;
|
287 |
+
height: 300px;
|
288 |
+
}
|
289 |
+
|
290 |
+
.feature-track {
|
291 |
+
display: flex;
|
292 |
+
animation: circularMove 15s linear infinite;
|
293 |
+
}
|
294 |
+
|
295 |
+
.feature-card {
|
296 |
+
flex: 0 0 300px; /* Fixed width for each card */
|
297 |
+
margin: 0 20px;
|
298 |
+
background: white;
|
299 |
+
color: #333; /* Text color */
|
300 |
+
padding: 20px;
|
301 |
+
border-radius: 10px;
|
302 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
303 |
+
text-align: center; /* Center-align the text */
|
304 |
+
overflow: hidden; /* Prevent overflow issues */
|
305 |
+
}
|
306 |
+
|
307 |
+
.feature-card h3 {
|
308 |
+
font-size: 1.2em;
|
309 |
+
margin-bottom: 10px;
|
310 |
+
text-align: center;
|
311 |
+
}
|
312 |
+
|
313 |
+
.feature-card p {
|
314 |
+
font-size: 0.9em;
|
315 |
+
line-height: 1.4;
|
316 |
+
text-align: center;
|
317 |
+
font-weight: bold;
|
318 |
+
}
|
319 |
+
|
320 |
+
|
321 |
+
.feature-card:hover {
|
322 |
+
transform: scale(1.1);
|
323 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
324 |
+
}
|
325 |
+
|
326 |
+
@keyframes circularMove {
|
327 |
+
0% {
|
328 |
+
transform: translateX(0);
|
329 |
+
}
|
330 |
+
100% {
|
331 |
+
transform: translateX(-100%);
|
332 |
+
}
|
333 |
+
*/}
|
334 |
+
.feature-container {
|
335 |
+
display: flex;
|
336 |
+
justify-content: center;
|
337 |
+
align-items: center;
|
338 |
+
height: 400px;
|
339 |
+
perspective: 1000px;
|
340 |
+
perspective-origin: 50% 50%;
|
341 |
+
background: linear-gradient(to bottom, #1e293b, #0f172a); /* Dark blue gradient background */
|
342 |
+
overflow: hidden;
|
343 |
+
position: relative;
|
344 |
+
padding: 40px 0;
|
345 |
+
}
|
346 |
+
|
347 |
+
.feature-track {
|
348 |
+
position: relative;
|
349 |
+
width: 100%;
|
350 |
+
height: 100%;
|
351 |
+
display: flex;
|
352 |
+
transform-style: preserve-3d;
|
353 |
+
animation: carousel 15s linear infinite;
|
354 |
+
}
|
355 |
+
|
356 |
+
.feature-card {
|
357 |
+
position: absolute;
|
358 |
+
width: 300px;
|
359 |
+
padding: 50px;
|
360 |
+
background: white;
|
361 |
+
border-radius: 15px;
|
362 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3); /* Enhanced shadow for better contrast */
|
363 |
+
backface-visibility: hidden;
|
364 |
+
transform-origin: center center;
|
365 |
+
transition: all 0.5s ease;
|
366 |
+
}
|
367 |
+
|
368 |
+
.feature-card h3 {
|
369 |
+
color: #1e293b;
|
370 |
+
font-size: 1.5em;
|
371 |
+
margin-bottom: 1rem;
|
372 |
+
font-weight: bold;
|
373 |
+
}
|
374 |
+
|
375 |
+
.feature-card p {
|
376 |
+
color: #475569;
|
377 |
+
line-height: 1.6;
|
378 |
+
}
|
379 |
+
|
380 |
+
/* Position and animate cards */
|
381 |
+
.feature-card:nth-child(1) {
|
382 |
+
transform: rotateY(0deg) translateZ(400px) translateX(0px);
|
383 |
+
}
|
384 |
+
|
385 |
+
.feature-card:nth-child(2) {
|
386 |
+
transform: rotateY(60deg) translateZ(400px) translateX(0px);
|
387 |
+
}
|
388 |
+
|
389 |
+
.feature-card:nth-child(3) {
|
390 |
+
transform: rotateY(120deg) translateZ(400px) translateX(0px);
|
391 |
+
}
|
392 |
+
|
393 |
+
.feature-card:nth-child(4) {
|
394 |
+
transform: rotateY(180deg) translateZ(400px) translateX(0px);
|
395 |
+
}
|
396 |
+
|
397 |
+
.feature-card:nth-child(5) {
|
398 |
+
transform: rotateY(240deg) translateZ(400px) translateX(0px);
|
399 |
+
}
|
400 |
+
|
401 |
+
.feature-card:nth-child(6) {
|
402 |
+
transform: rotateY(300deg) translateZ(400px) translateX(0px);
|
403 |
+
}
|
404 |
+
|
405 |
+
@keyframes carousel {
|
406 |
+
0% {
|
407 |
+
transform: translateZ(-400px) rotateY(0deg);
|
408 |
+
}
|
409 |
+
100% {
|
410 |
+
transform: translateZ(-400px) rotateY(-360deg);
|
411 |
+
}
|
412 |
+
}
|
413 |
+
|
414 |
+
/* Enhanced hover effect with glow */
|
415 |
+
.feature-card:hover {
|
416 |
+
transform: scale(1.1) translateZ(450px);
|
417 |
+
box-shadow: 0 8px 30px rgba(255, 255, 255, 0.1); /* Glowing effect */
|
418 |
+
z-index: 1;
|
419 |
+
}
|
420 |
+
|
421 |
+
/* Gradient overlays for depth effect */
|
422 |
+
.feature-container::before,
|
423 |
+
.feature-container::after {
|
424 |
+
content: '';
|
425 |
+
position: absolute;
|
426 |
+
width: 100%;
|
427 |
+
height: 100px;
|
428 |
+
z-index: 2;
|
429 |
+
pointer-events: none;
|
430 |
+
}
|
431 |
+
|
432 |
+
.feature-container::before {
|
433 |
+
top: 0;
|
434 |
+
background: linear-gradient(to bottom, #1e293b, rgba(30, 41, 59, 0));
|
435 |
+
}
|
436 |
+
|
437 |
+
.feature-container::after {
|
438 |
+
bottom: 0;
|
439 |
+
background: linear-gradient(to top, #1e293b, rgba(30, 41, 59, 0));
|
440 |
+
</style>
|
441 |
+
""", unsafe_allow_html=True)
|
442 |
+
|
443 |
+
# Check session expiry
|
444 |
+
if 'authenticated' in st.session_state and st.session_state['authenticated']:
|
445 |
+
if time.time() - st.session_state['last_activity'] > 1800: # 30 minutes
|
446 |
+
logout()
|
447 |
+
st.rerun()
|
448 |
+
st.session_state['last_activity'] = time.time()
|
449 |
+
|
450 |
+
# Initialize session state for registration form visibility
|
451 |
+
if 'show_register_form' not in st.session_state:
|
452 |
+
st.session_state['show_register_form'] = False
|
453 |
+
|
454 |
+
# Replace your login/registration section with this:
|
455 |
+
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
|
456 |
+
local_css()
|
457 |
+
|
458 |
+
# Landing page hero section
|
459 |
+
st.markdown("""
|
460 |
+
<div class="hero-section">
|
461 |
+
<h1 class="hero-title" style="font-size: 2.5em; margin-bottom: 20px;">Crop Disease Detection System</h1>
|
462 |
+
<p style="font-size: 1.2em; max-width: 800px; margin: 0 auto;">
|
463 |
+
An advanced AI-powered system that helps farmers and agricultural experts identify and manage crop diseases effectively
|
464 |
+
</p>
|
465 |
+
</div>
|
466 |
+
|
467 |
+
""", unsafe_allow_html=True)
|
468 |
+
|
469 |
+
# Features section using Streamlit columns
|
470 |
+
st.subheader("Key Features")
|
471 |
+
col1, col2, col3 = st.columns(3)
|
472 |
+
|
473 |
+
st.markdown("""
|
474 |
+
<div class="feature-container">
|
475 |
+
<div class="feature-track">
|
476 |
+
<div class="feature-card">
|
477 |
+
<h3>🔍 Instant Detection</h3>
|
478 |
+
<p>Upload images of your crops and get immediate disease detection results using state-of-the-art AI technology.</p>
|
479 |
+
</div>
|
480 |
+
<div class="feature-card">
|
481 |
+
<h3>💡 Expert Analysis</h3>
|
482 |
+
<p>Receive detailed analysis and recommendations from our plant pathology expert system.</p>
|
483 |
+
</div>
|
484 |
+
<div class="feature-card">
|
485 |
+
<h3>📊 Detailed Reports</h3>
|
486 |
+
<p>Generate comprehensive reports with treatment recommendations and preventive measures.</p>
|
487 |
+
</div>
|
488 |
+
<div class="feature-card">
|
489 |
+
<h3>🔍 Instant Detection</h3>
|
490 |
+
<p>Upload images of your crops and get immediate disease detection results using state-of-the-art AI technology.</p>
|
491 |
+
</div>
|
492 |
+
<div class="feature-card">
|
493 |
+
<h3>💡 Expert Analysis</h3>
|
494 |
+
<p>Receive detailed analysis and recommendations from our plant pathology expert system.</p>
|
495 |
+
</div>
|
496 |
+
<div class="feature-card">
|
497 |
+
<h3>📊 Detailed Reports</h3>
|
498 |
+
<p>Generate comprehensive reports with treatment recommendations and preventive measures.</p>
|
499 |
+
</div>
|
500 |
+
</div>
|
501 |
+
</div>
|
502 |
+
""", unsafe_allow_html=True)
|
503 |
+
|
504 |
+
# Crop carousel section
|
505 |
+
st.markdown("""
|
506 |
+
<div class="crop-carousel-container">
|
507 |
+
<div class="crop-carousel-track">
|
508 |
+
<div class="crop-card">
|
509 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/b034333ddcc732299d45abf753f3fa71f6ff48ffa3338bfecd615bc2.jpg?raw=true" alt="Crop 1">
|
510 |
+
<h4>Corn Leaf Blight</h4>
|
511 |
+
<p>Corn leaf blight is a fungal disease caused primarily by Exserohilum turcicum (Northern corn leaf blight) and Bipolaris maydis (Southern corn leaf blight).</p>
|
512 |
+
</div>
|
513 |
+
<div class="crop-card">
|
514 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/apple.jpg?raw=true" alt="Crop 2">
|
515 |
+
<h4>Apple Scab Leaf</h4>
|
516 |
+
<p>Apple scab is a fungal disease caused by Venturia inaequalis. It primarily affects apple and crabapple trees.</p>
|
517 |
+
</div>
|
518 |
+
<div class="crop-card">
|
519 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/tomato.jpg?raw=true" alt="Crop 3">
|
520 |
+
<h4>Tomato Leaf Late Blight</h4>
|
521 |
+
<p>Late blight of tomato is caused by the oomycete pathogen Phytophthora infestans. It is characterized by dark, water-soaked lesions on leaves, stems, and fruit.</p>
|
522 |
+
</div>
|
523 |
+
<div class="crop-card">
|
524 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/918d1d7a3dda5ce8fbdabf92e5bf38f104efd129ee09adcc6d1ad46c.jpg?raw=true" alt="Crop 4">
|
525 |
+
<h4>Tomato Leaf Yellow Virus</h4>
|
526 |
+
<p>Tomato leaf yellow virus (often referred to as Tomato yellow leaf curl virus, or TYLCV) is a viral disease transmitted by whiteflies. It causes yellowing and curling of tomato leaves.</p>
|
527 |
+
</div>
|
528 |
+
</div>
|
529 |
+
</div>
|
530 |
+
""", unsafe_allow_html=True)
|
531 |
+
|
532 |
+
st.markdown("""
|
533 |
+
<style>
|
534 |
+
.crop-carousel-container {
|
535 |
+
width: 100%;
|
536 |
+
max-width: 800px;
|
537 |
+
margin: auto;
|
538 |
+
overflow: hidden;
|
539 |
+
position: relative;
|
540 |
+
}
|
541 |
+
|
542 |
+
.crop-carousel-track {
|
543 |
+
display: flex;
|
544 |
+
animation: moveLeft 20s linear infinite; /* Move right to left */
|
545 |
+
}
|
546 |
+
|
547 |
+
.crop-card {
|
548 |
+
flex: 0 0 300px;
|
549 |
+
margin: 0 20px;
|
550 |
+
background: white;
|
551 |
+
color: #333;
|
552 |
+
padding: 20px;
|
553 |
+
border-radius: 10px;
|
554 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
555 |
+
text-align: center;
|
556 |
+
overflow: hidden;
|
557 |
+
}
|
558 |
+
|
559 |
+
.crop-card img {
|
560 |
+
width: 100%;
|
561 |
+
height: 150px;
|
562 |
+
object-fit: cover;
|
563 |
+
border-radius: 10px;
|
564 |
+
margin-bottom: 10px;
|
565 |
+
}
|
566 |
+
|
567 |
+
.crop-card h4 {
|
568 |
+
font-size: 1.2em;
|
569 |
+
margin: 10px 0;
|
570 |
+
}
|
571 |
+
|
572 |
+
.crop-card p {
|
573 |
+
font-size: 0.9em;
|
574 |
+
line-height: 1.4;
|
575 |
+
color: #555;
|
576 |
+
}
|
577 |
+
|
578 |
+
@keyframes moveLeft {
|
579 |
+
0% {
|
580 |
+
transform: translateX(100%);
|
581 |
+
}
|
582 |
+
100% {
|
583 |
+
transform: translateX(-100%);
|
584 |
+
}
|
585 |
+
}
|
586 |
+
</style>
|
587 |
+
""", unsafe_allow_html=True)
|
588 |
+
|
589 |
+
|
590 |
+
# Add some spacing
|
591 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
592 |
+
|
593 |
+
# Authentication container
|
594 |
+
st.markdown('<div class="auth-container">', unsafe_allow_html=True)
|
595 |
+
|
596 |
+
# Initialize password reset state
|
597 |
+
if 'show_reset_form' not in st.session_state:
|
598 |
+
st.session_state['show_reset_form'] = False
|
599 |
+
|
600 |
+
# Update password function
|
601 |
+
def update_password(username, new_password):
|
602 |
+
conn = sqlite3.connect('users.db')
|
603 |
+
c = conn.cursor()
|
604 |
+
|
605 |
+
# Check if username exists
|
606 |
+
c.execute("SELECT id FROM users WHERE username = ?", (username,))
|
607 |
+
if not c.fetchone():
|
608 |
+
return False
|
609 |
+
|
610 |
+
# Update password
|
611 |
+
password_hash = bcrypt.hashpw(new_password.encode(), bcrypt.gensalt())
|
612 |
+
c.execute("UPDATE users SET password_hash = ? WHERE username = ?",
|
613 |
+
(password_hash, username))
|
614 |
+
conn.commit()
|
615 |
+
conn.close()
|
616 |
+
return True
|
617 |
+
|
618 |
+
|
619 |
+
# Update the authentication container section
|
620 |
+
if not st.session_state.get('authenticated', False):
|
621 |
+
st.markdown('<div class="auth-container">', unsafe_allow_html=True)
|
622 |
+
|
623 |
+
# Reset Password Form
|
624 |
+
if st.session_state.get('show_reset_form', False):
|
625 |
+
st.markdown('<h1 class="auth-title">Reset Password</h1>', unsafe_allow_html=True)
|
626 |
+
st.markdown('<p class="auth-subtitle">Enter your username and new password</p>', unsafe_allow_html=True)
|
627 |
+
|
628 |
+
with st.form("reset_form"):
|
629 |
+
username = st.text_input("Username")
|
630 |
+
new_password = st.text_input("New Password", type="password")
|
631 |
+
confirm_password = st.text_input("Confirm Password", type="password")
|
632 |
+
submit = st.form_submit_button("Reset Password")
|
633 |
+
|
634 |
+
if submit:
|
635 |
+
if not username or not new_password or not confirm_password:
|
636 |
+
st.error("All fields are required.")
|
637 |
+
elif new_password != confirm_password:
|
638 |
+
st.error("Passwords do not match.")
|
639 |
+
elif update_password(username, new_password):
|
640 |
+
st.success("Password updated successfully!")
|
641 |
+
st.session_state['show_reset_form'] = False
|
642 |
+
time.sleep(1)
|
643 |
+
st.rerun()
|
644 |
+
else:
|
645 |
+
st.error("Username not found.")
|
646 |
+
|
647 |
+
if st.button("Back to Login"):
|
648 |
+
st.session_state['show_reset_form'] = False
|
649 |
+
st.rerun()
|
650 |
+
|
651 |
+
# Registration Form
|
652 |
+
elif st.session_state.get('show_register_form', False):
|
653 |
+
st.markdown('<h1 class="auth-title">Create Account</h1>', unsafe_allow_html=True)
|
654 |
+
st.markdown('<p class="auth-subtitle">Sign up to get started</p>', unsafe_allow_html=True)
|
655 |
+
|
656 |
+
with st.form("register_form"):
|
657 |
+
new_username = st.text_input("Username")
|
658 |
+
new_password = st.text_input("Password", type="password")
|
659 |
+
submit_button = st.form_submit_button("Create Account")
|
660 |
+
|
661 |
+
if submit_button:
|
662 |
+
if new_username and new_password:
|
663 |
+
if add_user(new_username, new_password):
|
664 |
+
st.success("Account created successfully!")
|
665 |
+
st.session_state['show_register_form'] = False
|
666 |
+
time.sleep(1)
|
667 |
+
st.rerun()
|
668 |
+
else:
|
669 |
+
st.error("Username already exists.")
|
670 |
+
else:
|
671 |
+
st.error("Username and password are required.")
|
672 |
+
|
673 |
+
st.markdown('<div class="divider"><span>OR</span></div>', unsafe_allow_html=True)
|
674 |
+
if st.button("Back to Login"):
|
675 |
+
st.session_state['show_register_form'] = False
|
676 |
+
st.rerun()
|
677 |
+
|
678 |
+
# Login Form (default)
|
679 |
+
else:
|
680 |
+
st.markdown('<h1 class="auth-title">Welcome Back</h1>', unsafe_allow_html=True)
|
681 |
+
st.markdown('<p class="auth-subtitle">Sign in to your account</p>', unsafe_allow_html=True)
|
682 |
+
|
683 |
+
with st.form("login_form"):
|
684 |
+
username = st.text_input("Username")
|
685 |
+
password = st.text_input("Password", type="password")
|
686 |
+
cols = st.columns([1, 1])
|
687 |
+
submit_button = cols[0].form_submit_button("Sign In")
|
688 |
+
forgot_password = cols[1].form_submit_button("Forgot Password?")
|
689 |
+
|
690 |
+
if submit_button:
|
691 |
+
if login(username, password):
|
692 |
+
st.success("Logged in successfully!")
|
693 |
+
time.sleep(1)
|
694 |
+
st.rerun()
|
695 |
+
elif forgot_password:
|
696 |
+
st.session_state['show_reset_form'] = True
|
697 |
+
st.rerun()
|
698 |
+
|
699 |
+
st.markdown('<div class="divider"><span>OR</span></div>', unsafe_allow_html=True)
|
700 |
+
if st.button("Create New Account"):
|
701 |
+
st.session_state['show_register_form'] = True
|
702 |
+
st.rerun()
|
703 |
+
|
704 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
705 |
+
|
706 |
+
# Update the footer section (replace the existing footer with this)
|
707 |
+
st.markdown("""
|
708 |
+
<div style="background: linear-gradient(to right, #1e293b, #334155); color: white; padding: 40px 0; margin-top: 40px;">
|
709 |
+
<div style="max-width: 1200px; margin: auto; padding: 0 20px;">
|
710 |
+
<div style="display: flex; flex-wrap: wrap; justify-content: space-between; gap: 40px;">
|
711 |
+
<!-- About Section -->
|
712 |
+
<div style="flex: 1; min-width: 250px;">
|
713 |
+
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">About Our Platform</h3>
|
714 |
+
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 20px;">
|
715 |
+
Our AI-powered platform revolutionizes crop disease detection and management.
|
716 |
+
We combine cutting-edge technology with agricultural expertise to protect your crops
|
717 |
+
and maximize your yield.
|
718 |
+
</p>
|
719 |
+
</div>
|
720 |
+
<div style="flex: 1; min-width: 250px;">
|
721 |
+
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">Key Features</h3>
|
722 |
+
<ul style="list-style: none; padding: 0; color: #e2e8f0;">
|
723 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
724 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Real-time Disease Detection
|
725 |
+
</li>
|
726 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
727 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Multi-language Support
|
728 |
+
</li>
|
729 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
730 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Expert Analysis Reports
|
731 |
+
</li>
|
732 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
733 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Treatment Recommendations
|
734 |
+
</li>
|
735 |
+
</ul>
|
736 |
+
</div>
|
737 |
+
<div style="flex: 1; min-width: 250px;">
|
738 |
+
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">Contact Us</h3>
|
739 |
+
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 10px;">
|
740 |
+
<span style="color: #60a5fa;">Email:</span> [email protected]
|
741 |
+
</p>
|
742 |
+
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 20px;">
|
743 |
+
<span style="color: #60a5fa;">Phone:</span> +1 (234) 567-8900
|
744 |
+
</p>
|
745 |
+
<div style="display: flex; gap: 15px; margin-top: 20px;">
|
746 |
+
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
|
747 |
+
<span>📱</span>
|
748 |
+
</a>
|
749 |
+
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
|
750 |
+
<span>💬</span>
|
751 |
+
</a>
|
752 |
+
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
|
753 |
+
<span>📨</span>
|
754 |
+
</a>
|
755 |
+
</div>
|
756 |
+
</div>
|
757 |
+
</div>
|
758 |
+
<div style="border-top: 1px solid #4b5563; margin-top: 40px; padding-top: 20px; text-align: center;">
|
759 |
+
<p style="color: #e2e8f0; font-size: 0.9em;">
|
760 |
+
© 2025 Crop Disease Detection System. All rights reserved.
|
761 |
+
</p>
|
762 |
+
<div style="margin-top: 10px;">
|
763 |
+
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">Privacy Policy</a>
|
764 |
+
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">Terms of Service</a>
|
765 |
+
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">FAQ</a>
|
766 |
+
</div>
|
767 |
+
</div>
|
768 |
+
</div>
|
769 |
+
</div>
|
770 |
+
""", unsafe_allow_html=True)
|
771 |
+
|
772 |
+
st.stop()
|
773 |
+
|
774 |
+
# Update database schema to include comments
|
775 |
+
def setup_feedback_db():
|
776 |
+
conn = sqlite3.connect('customer_feedback.db')
|
777 |
+
c = conn.cursor()
|
778 |
+
c.execute('''CREATE TABLE IF NOT EXISTS customer_feedback
|
779 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
780 |
+
question TEXT,
|
781 |
+
response TEXT,
|
782 |
+
feedback_type TEXT,
|
783 |
+
comment_type TEXT,
|
784 |
+
custom_comment TEXT,
|
785 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
786 |
+
conn.commit()
|
787 |
+
return conn, c
|
788 |
+
|
789 |
+
def save_feedback(question, response, feedback_type, comment_type=None, custom_comment=None):
|
790 |
+
conn, c = setup_feedback_db()
|
791 |
+
try:
|
792 |
+
c.execute("""INSERT INTO customer_feedback
|
793 |
+
(question, response, feedback_type, comment_type, custom_comment)
|
794 |
+
VALUES (?, ?, ?, ?, ?)""",
|
795 |
+
(question, response, feedback_type, comment_type, custom_comment))
|
796 |
+
conn.commit()
|
797 |
+
return True
|
798 |
+
except Exception as e:
|
799 |
+
st.error(f"Error saving feedback: {e}")
|
800 |
+
return False
|
801 |
+
finally:
|
802 |
+
conn.close()
|
803 |
+
|
804 |
+
# Update the conversation display section
|
805 |
+
def display_feedback_buttons(file_id, index, question, response):
|
806 |
+
# Suggested comments
|
807 |
+
SUGGESTED_COMMENTS = [
|
808 |
+
"Inaccurate information",
|
809 |
+
"Unclear explanation",
|
810 |
+
"Missing details",
|
811 |
+
"Not relevant to question",
|
812 |
+
"Technical error",
|
813 |
+
"Other"
|
814 |
+
]
|
815 |
+
|
816 |
+
# Initialize session state for feedback if it doesn't exist
|
817 |
+
if f"feedback_{file_id}_{index}" not in st.session_state:
|
818 |
+
st.session_state[f"feedback_{file_id}_{index}"] = {
|
819 |
+
"feedback_type": None, # Stores "👍" or "👎"
|
820 |
+
"comment": None, # Stores the user's comment
|
821 |
+
"submitted": False # Tracks whether feedback has been submitted
|
822 |
+
}
|
823 |
+
|
824 |
+
col1, col2 = st.columns([1, 4])
|
825 |
+
with col1:
|
826 |
+
if st.button("👍", key=f"helpful_{file_id}_{index}"):
|
827 |
+
# Save positive feedback immediately
|
828 |
+
save_feedback(question, response, "👍")
|
829 |
+
st.success("Feedback saved!")
|
830 |
+
# Update session state to indicate feedback has been submitted
|
831 |
+
st.session_state[f"feedback_{file_id}_{index}"]["submitted"] = True
|
832 |
+
return
|
833 |
+
|
834 |
+
with col2:
|
835 |
+
if st.button("👎", key=f"not_helpful_{file_id}_{index}"):
|
836 |
+
# Store the feedback type in session state
|
837 |
+
st.session_state[f"feedback_{file_id}_{index}"]["feedback_type"] = "👎"
|
838 |
+
|
839 |
+
# Check if feedback_type is "👎" before showing the comment input field
|
840 |
+
if st.session_state[f"feedback_{file_id}_{index}"].get("feedback_type") == "👎":
|
841 |
+
# Display suggested comments in a dropdown menu
|
842 |
+
selected_comment = st.selectbox(
|
843 |
+
"What was the issue?",
|
844 |
+
options=SUGGESTED_COMMENTS,
|
845 |
+
key=f"suggested_comment_{file_id}_{index}"
|
846 |
+
)
|
847 |
+
|
848 |
+
# If the user selects "Other", allow them to provide a custom comment
|
849 |
+
custom_comment = None
|
850 |
+
if selected_comment == "Other":
|
851 |
+
custom_comment = st.text_area(
|
852 |
+
"Please describe the issue:",
|
853 |
+
key=f"custom_comment_{file_id}_{index}"
|
854 |
+
)
|
855 |
+
|
856 |
+
# Submit Feedback button
|
857 |
+
if st.button("Submit Feedback", key=f"submit_{file_id}_{index}"):
|
858 |
+
# Save feedback to the database
|
859 |
+
save_feedback(
|
860 |
+
question,
|
861 |
+
response,
|
862 |
+
st.session_state[f"feedback_{file_id}_{index}"]["feedback_type"],
|
863 |
+
custom_comment if selected_comment == "Other" else selected_comment
|
864 |
+
)
|
865 |
+
st.success("Thank you for your feedback!")
|
866 |
+
# Update session state to indicate feedback has been submitted
|
867 |
+
st.session_state[f"feedback_{file_id}_{index}"]["submitted"] = True
|
868 |
+
return
|
869 |
+
|
870 |
+
# Model configuration
|
871 |
+
SUPPORTED_MODELS = {
|
872 |
+
"llama3.2": {
|
873 |
+
"name": "llama3.2",
|
874 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
875 |
+
"supports_vision": False
|
876 |
+
},
|
877 |
+
"llama3.1": {
|
878 |
+
"name": "llama3.1",
|
879 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
880 |
+
"supports_vision": False
|
881 |
+
},
|
882 |
+
"llama2": {
|
883 |
+
"name": "llama2",
|
884 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
885 |
+
"supports_vision": False
|
886 |
+
},
|
887 |
+
"llava": {
|
888 |
+
"name": "llava",
|
889 |
+
"system_prompt": "You are a helpful plant pathology expert assistant with vision capabilities.",
|
890 |
+
"supports_vision": True,
|
891 |
+
"vision_prompt": "Analyze the image and describe the diseases present."
|
892 |
+
},
|
893 |
+
"mistral": {
|
894 |
+
"name": "mistral",
|
895 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
896 |
+
"supports_vision": False
|
897 |
+
},
|
898 |
+
"gemma": {
|
899 |
+
"name": "gemma",
|
900 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
901 |
+
"supports_vision": False
|
902 |
+
},
|
903 |
+
"jyan1/paligemma-mix-224": {
|
904 |
+
"name": "jyan1/paligemma-mix-224",
|
905 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
906 |
+
"supports_vision": True
|
907 |
+
}
|
908 |
+
}
|
909 |
+
|
910 |
+
# Initialize session state for conversation history if it doesn't exist
|
911 |
+
if 'conversation_history' not in st.session_state:
|
912 |
+
st.session_state.conversation_history = {}
|
913 |
+
|
914 |
+
# Load YOLOv8 model
|
915 |
+
yolo_model = YOLO("models/best.pt")
|
916 |
+
|
917 |
+
def preprocess_image(image, target_size=(224, 224)):
|
918 |
+
"""
|
919 |
+
Preprocess the image for vision-capable models.
|
920 |
+
"""
|
921 |
+
image = Image.fromarray(image)
|
922 |
+
image = image.resize(target_size)
|
923 |
+
return image
|
924 |
+
|
925 |
+
def text_to_speech(text, language='en'):
|
926 |
+
"""Convert text to speech using gTTS"""
|
927 |
+
try:
|
928 |
+
# Create temporary file
|
929 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
|
930 |
+
# Generate audio file
|
931 |
+
tts = gTTS(text=text, lang=language, slow=False)
|
932 |
+
tts.save(temp_audio.name)
|
933 |
+
|
934 |
+
# Read the audio file
|
935 |
+
with open(temp_audio.name, 'rb') as audio_file:
|
936 |
+
audio_bytes = audio_file.read()
|
937 |
+
|
938 |
+
# Clean up
|
939 |
+
os.unlink(temp_audio.name)
|
940 |
+
|
941 |
+
return audio_bytes
|
942 |
+
except Exception as e:
|
943 |
+
st.error(f"Error generating speech: {str(e)}")
|
944 |
+
return None
|
945 |
+
|
946 |
+
def check_ollama_connection():
|
947 |
+
try:
|
948 |
+
response = requests.get("http://localhost:11434")
|
949 |
+
return response.status_code == 200
|
950 |
+
except Exception as e:
|
951 |
+
return False
|
952 |
+
|
953 |
+
def generate_ollama_response(prompt, model_name="llama2", conversation_history=None, image_data=None):
|
954 |
+
try:
|
955 |
+
if model_name not in SUPPORTED_MODELS:
|
956 |
+
return f"Error: Model {model_name} is not supported."
|
957 |
+
|
958 |
+
model_config = SUPPORTED_MODELS[model_name]
|
959 |
+
|
960 |
+
# Build the messages array
|
961 |
+
messages = [
|
962 |
+
{
|
963 |
+
"role": "system",
|
964 |
+
"content": model_config["system_prompt"]
|
965 |
+
}
|
966 |
+
]
|
967 |
+
|
968 |
+
# Add conversation history
|
969 |
+
if conversation_history:
|
970 |
+
for entry in conversation_history:
|
971 |
+
if len(entry) >= 2: # Handle tuples with 2 or 3 values
|
972 |
+
question, response = entry[:2]
|
973 |
+
messages.extend([
|
974 |
+
{"role": "user", "content": question},
|
975 |
+
{"role": "assistant", "content": response}
|
976 |
+
])
|
977 |
+
|
978 |
+
# Handle vision models differently
|
979 |
+
if model_config["supports_vision"] and image_data is not None:
|
980 |
+
if isinstance(image_data, np.ndarray):
|
981 |
+
image = Image.fromarray(image_data)
|
982 |
+
buffered = BytesIO()
|
983 |
+
image.save(buffered, format="JPEG")
|
984 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
985 |
+
|
986 |
+
messages.append({
|
987 |
+
"role": "user",
|
988 |
+
"content": [
|
989 |
+
{"type": "text", "text": prompt},
|
990 |
+
{"type": "image", "image": img_str}
|
991 |
+
]
|
992 |
+
})
|
993 |
+
else:
|
994 |
+
messages.append({
|
995 |
+
"role": "user",
|
996 |
+
"content": prompt
|
997 |
+
})
|
998 |
+
|
999 |
+
# Make an API call to Ollama
|
1000 |
+
api_url = "http://localhost:11434/api/generate" # Ollama API endpoint
|
1001 |
+
payload = {
|
1002 |
+
"model": model_config["name"],
|
1003 |
+
"prompt": prompt, # Use the prompt directly
|
1004 |
+
"stream": False # Set to True if you want streaming responses
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
# Send the request
|
1008 |
+
response = requests.post(api_url, json=payload)
|
1009 |
+
|
1010 |
+
# Check for errors
|
1011 |
+
if response.status_code != 200:
|
1012 |
+
return f"Error: API request failed with status code {response.status_code}. Response: {response.text}"
|
1013 |
+
|
1014 |
+
# Parse the response
|
1015 |
+
response_data = response.json()
|
1016 |
+
|
1017 |
+
# Check if the response contains the expected key
|
1018 |
+
if "response" in response_data:
|
1019 |
+
return response_data["response"]
|
1020 |
+
else:
|
1021 |
+
return f"Error: Unexpected response format: {response_data}"
|
1022 |
+
|
1023 |
+
except Exception as e:
|
1024 |
+
return f"Error connecting to Ollama API: {str(e)}"
|
1025 |
+
|
1026 |
+
def generate_improved_description(detected_classes, class_names, user_text, image_details=None, conversation_history=None):
|
1027 |
+
"""
|
1028 |
+
Generate a more detailed and contextual description using Ollama
|
1029 |
+
"""
|
1030 |
+
detected_objects = [class_names[cls] for cls in detected_classes]
|
1031 |
+
|
1032 |
+
# Create base context about detected diseases
|
1033 |
+
disease_context = f"Detected diseases: {', '.join(detected_objects)}"
|
1034 |
+
|
1035 |
+
# Different prompt structure for initial vs. follow-up questions
|
1036 |
+
if not conversation_history:
|
1037 |
+
base_prompt = f"""As an expert plant pathologist, analyze the following crop diseases detected in the image: {', '.join(detected_objects)}.
|
1038 |
+
|
1039 |
+
For each detected disease, provide a structured analysis following this format:
|
1040 |
+
|
1041 |
+
1. Disease Name: [Name]
|
1042 |
+
- Pathogen: [Causative organism]
|
1043 |
+
- Severity Level: [Based on visual symptoms]
|
1044 |
+
- Key Symptoms:
|
1045 |
+
* [Symptom 1]
|
1046 |
+
* [Symptom 2]
|
1047 |
+
- Economic Impact:
|
1048 |
+
* [Brief description of potential crop losses]
|
1049 |
+
- Treatment Options:
|
1050 |
+
* Immediate actions: [Short-term solutions]
|
1051 |
+
* Long-term management: [Preventive measures]
|
1052 |
+
- Environmental Conditions:
|
1053 |
+
* Favorable conditions for disease development
|
1054 |
+
* Risk factors
|
1055 |
+
|
1056 |
+
2. Recommendations:
|
1057 |
+
- Immediate Steps:
|
1058 |
+
* [Action items for immediate control]
|
1059 |
+
- Prevention Strategy:
|
1060 |
+
* [Long-term prevention measures]
|
1061 |
+
- Monitoring Protocol:
|
1062 |
+
* [What to watch for]
|
1063 |
+
|
1064 |
+
Initial Question/Context: {user_text if user_text else "Provide a general analysis"}
|
1065 |
+
"""
|
1066 |
+
else:
|
1067 |
+
base_prompt = f"""Context: {disease_context}
|
1068 |
+
|
1069 |
+
Previous conversation context has been provided above. Please address the following follow-up question while maintaining consistency with previous responses:
|
1070 |
+
|
1071 |
+
{user_text}
|
1072 |
+
|
1073 |
+
Provide a detailed response that builds upon the previous context and specifically addresses this question."""
|
1074 |
+
|
1075 |
+
# Get the selected model from session state or default to llama2
|
1076 |
+
selected_model = st.session_state.get('selected_model', 'llama2')
|
1077 |
+
|
1078 |
+
return generate_ollama_response(
|
1079 |
+
base_prompt,
|
1080 |
+
model_name=selected_model,
|
1081 |
+
conversation_history=conversation_history,
|
1082 |
+
image_data=image_details.get("image_data") if image_details else None
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
def inference(image):
|
1086 |
+
"""
|
1087 |
+
Enhanced inference function with confidence scores and bounding box information
|
1088 |
+
"""
|
1089 |
+
results = yolo_model(image, conf=0.4)
|
1090 |
+
infer = np.zeros(image.shape, dtype=np.uint8)
|
1091 |
+
classes = dict()
|
1092 |
+
names_infer = []
|
1093 |
+
confidence_scores = []
|
1094 |
+
bounding_boxes = []
|
1095 |
+
|
1096 |
+
for r in results:
|
1097 |
+
infer = r.plot()
|
1098 |
+
classes = r.names
|
1099 |
+
names_infer = r.boxes.cls.tolist()
|
1100 |
+
confidence_scores = r.boxes.conf.tolist()
|
1101 |
+
bounding_boxes = r.boxes.xyxy.tolist()
|
1102 |
+
|
1103 |
+
return infer, names_infer, classes, confidence_scores, bounding_boxes
|
1104 |
+
|
1105 |
+
# Streamlit application
|
1106 |
+
st.title("Interactive Crop Disease Detection and Analysis🌾🌿🥬☘️")
|
1107 |
+
st.write(f"Welcome, {st.session_state['username']}!😊")
|
1108 |
+
|
1109 |
+
# Logout button
|
1110 |
+
if st.button("Logout"):
|
1111 |
+
logout()
|
1112 |
+
st.rerun()
|
1113 |
+
|
1114 |
+
# Add sidebar for configuration
|
1115 |
+
with st.sidebar:
|
1116 |
+
st.header("Settings")
|
1117 |
+
selected_model = st.selectbox(
|
1118 |
+
"Select LLM Model",
|
1119 |
+
list(SUPPORTED_MODELS.keys()),
|
1120 |
+
index=0, # Default to first model (bart-large-cnn)
|
1121 |
+
help="Choose the Ollama model to use for analysis"
|
1122 |
+
)
|
1123 |
+
# Store the selected model in session state
|
1124 |
+
st.session_state['selected_model'] = selected_model
|
1125 |
+
|
1126 |
+
if SUPPORTED_MODELS[selected_model]["supports_vision"]:
|
1127 |
+
st.info("This model supports vision capabilities and can analyze images directly.")
|
1128 |
+
|
1129 |
+
confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
|
1130 |
+
show_confidence = st.checkbox("Show Confidence Scores", value=True)
|
1131 |
+
show_bbox = st.checkbox("Show Bounding Boxes", value=True)
|
1132 |
+
|
1133 |
+
# TTS Settings
|
1134 |
+
st.header("Text-to-Speech Settings")
|
1135 |
+
tts_enabled = st.checkbox("Enable Text-to-Speech", value=True)
|
1136 |
+
if tts_enabled:
|
1137 |
+
language = st.selectbox("Speech Language",
|
1138 |
+
options=['en', 'es', 'fr', 'de'],
|
1139 |
+
format_func=lambda x: {
|
1140 |
+
'en': 'English',
|
1141 |
+
'es': 'Spanish',
|
1142 |
+
'fr': 'French',
|
1143 |
+
'de': 'German'
|
1144 |
+
}[x],
|
1145 |
+
help="Select speech language")
|
1146 |
+
|
1147 |
+
# Add option to clear conversation history
|
1148 |
+
if st.button("Clear All Conversations"):
|
1149 |
+
st.session_state.conversation_history = {}
|
1150 |
+
st.success("Conversation history cleared!")
|
1151 |
+
|
1152 |
+
# Language selection
|
1153 |
+
language = st.selectbox(
|
1154 |
+
"Select Language",
|
1155 |
+
options=['en', 'es', 'fr', 'de'], # Add more languages as needed
|
1156 |
+
format_func=lambda x: {
|
1157 |
+
'en': 'English',
|
1158 |
+
'es': 'Spanish',
|
1159 |
+
'fr': 'French',
|
1160 |
+
'de': 'German'
|
1161 |
+
}[x],
|
1162 |
+
help="Select your preferred language"
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
# Main content
|
1166 |
+
uploaded_files = st.file_uploader("Upload images for disease detection", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
1167 |
+
|
1168 |
+
if uploaded_files:
|
1169 |
+
for uploaded_file in uploaded_files:
|
1170 |
+
file_id = uploaded_file.name
|
1171 |
+
|
1172 |
+
# Initialize conversation history for this image if it doesn't exist
|
1173 |
+
if file_id not in st.session_state.conversation_history:
|
1174 |
+
st.session_state.conversation_history[file_id] = []
|
1175 |
+
|
1176 |
+
st.header(f"Analysis for {file_id}")
|
1177 |
+
|
1178 |
+
# Create columns for side-by-side display
|
1179 |
+
col1, col2 = st.columns(2)
|
1180 |
+
|
1181 |
+
# Process image
|
1182 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
1183 |
+
image = cv2.imdecode(file_bytes, 1)
|
1184 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
1185 |
+
|
1186 |
+
# Display original image
|
1187 |
+
with col1:
|
1188 |
+
st.subheader("Original Image")
|
1189 |
+
st.image(image, use_container_width=True)
|
1190 |
+
|
1191 |
+
# Process and display results
|
1192 |
+
with st.spinner("Processing image..."):
|
1193 |
+
infer_image, classes_in_image, classes_in_dataset, confidences, boxes = inference(image)
|
1194 |
+
|
1195 |
+
with col2:
|
1196 |
+
st.subheader("Detected Diseases")
|
1197 |
+
st.image(infer_image, use_container_width=True)
|
1198 |
+
|
1199 |
+
# Display detection details
|
1200 |
+
if show_confidence:
|
1201 |
+
st.subheader("Detection Details")
|
1202 |
+
for cls, conf in zip(classes_in_image, confidences):
|
1203 |
+
st.write(f"- {classes_in_dataset[cls]}: {conf:.2%} confidence")
|
1204 |
+
|
1205 |
+
# Display conversation history
|
1206 |
+
if st.session_state.conversation_history[file_id]:
|
1207 |
+
st.subheader("Conversation History")
|
1208 |
+
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
|
1209 |
+
question, response = entry[:2]
|
1210 |
+
|
1211 |
+
with st.expander(f"Q{i+1}: {question[:50]}...", expanded=False):
|
1212 |
+
st.write("**Question:**", question)
|
1213 |
+
st.write("**Response:**", response)
|
1214 |
+
|
1215 |
+
# Display feedback buttons and handle comment collection
|
1216 |
+
display_feedback_buttons(file_id, i, question, response)
|
1217 |
+
|
1218 |
+
# Audio playback option
|
1219 |
+
if tts_enabled:
|
1220 |
+
if st.button("🔊 Listen", key=f"listen_history_{file_id}_{i}"):
|
1221 |
+
with st.spinner("Generating audio..."):
|
1222 |
+
audio_bytes = text_to_speech(response, language)
|
1223 |
+
if audio_bytes:
|
1224 |
+
st.audio(audio_bytes, format='audio/mp3')
|
1225 |
+
|
1226 |
+
|
1227 |
+
# User input for questions
|
1228 |
+
st.subheader("Ask Questions")
|
1229 |
+
user_text = st.text_area(
|
1230 |
+
"Enter your question about the detected diseases:",
|
1231 |
+
placeholder="Example: What are the best treatment options for these diseases? What preventive measures should I take?",
|
1232 |
+
key=f"question_{file_id}"
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
def translate_text(text, target_lang='en'):
|
1236 |
+
translator = GoogleTranslator(source='auto', target=target_lang)
|
1237 |
+
return translator.translate(text)
|
1238 |
+
|
1239 |
+
# Use the async function in your Streamlit app
|
1240 |
+
if st.button("Get Analysis", key=f"analyze_{file_id}"):
|
1241 |
+
with st.spinner(f"Generating analysis using {selected_model}..."):
|
1242 |
+
# Perform translation
|
1243 |
+
translated_input = translate_text(user_text, target_lang='en')
|
1244 |
+
st.write(f"Translated Input (to English): {translated_input}")
|
1245 |
+
|
1246 |
+
# Create detailed image information dictionary
|
1247 |
+
image_details = {
|
1248 |
+
"confidence_scores": confidences,
|
1249 |
+
"bounding_boxes": boxes,
|
1250 |
+
"image_dimensions": image.shape,
|
1251 |
+
"image_data": image # Add the image data for vision models
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
# Generate response
|
1255 |
+
response = generate_improved_description(
|
1256 |
+
classes_in_image,
|
1257 |
+
classes_in_dataset,
|
1258 |
+
translated_input,
|
1259 |
+
image_details,
|
1260 |
+
st.session_state.conversation_history[file_id]
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
# Translate LLM response
|
1264 |
+
translated_response = translate_text(response, target_lang=language)
|
1265 |
+
|
1266 |
+
# Add to conversation history and display the response
|
1267 |
+
st.session_state.conversation_history[file_id].append((user_text, translated_response, None))
|
1268 |
+
st.markdown("### Latest Response")
|
1269 |
+
st.markdown(translated_response)
|
1270 |
+
|
1271 |
+
# Add audio playback option for the latest response
|
1272 |
+
if tts_enabled:
|
1273 |
+
col1, col2 = st.columns([1, 4])
|
1274 |
+
with col1:
|
1275 |
+
if st.button("🔊 Listen", key=f"listen_latest_{file_id}"):
|
1276 |
+
with st.spinner("Generating audio..."):
|
1277 |
+
audio_bytes = text_to_speech(translated_response, language)
|
1278 |
+
if audio_bytes:
|
1279 |
+
st.audio(audio_bytes, format='audio/mp3')
|
1280 |
+
|
1281 |
+
# Export conversation
|
1282 |
+
if st.button("Export Conversation", key=f"export_{file_id}"):
|
1283 |
+
conversation_text = f"""
|
1284 |
+
# Crop Disease Analysis Report
|
1285 |
+
|
1286 |
+
## Image Information
|
1287 |
+
- Filename: {file_id}
|
1288 |
+
- Analysis Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
1289 |
+
|
1290 |
+
## Detected Diseases
|
1291 |
+
{', '.join([classes_in_dataset[cls] for cls in classes_in_image])}
|
1292 |
+
|
1293 |
+
## Conversation History
|
1294 |
+
"""
|
1295 |
+
|
1296 |
+
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
|
1297 |
+
if len(entry) == 2: # Handle legacy entries
|
1298 |
+
question, response = entry
|
1299 |
+
feedback = "No feedback"
|
1300 |
+
else:
|
1301 |
+
question, response, feedback = entry
|
1302 |
+
|
1303 |
+
conversation_text += f"\n### Question {i+1}:\n{question}\n\n### Answer {i+1}:\n{response}\n\n### Feedback {i+1}:\n{feedback}\n"
|
1304 |
+
|
1305 |
+
st.download_button(
|
1306 |
+
label="Download Conversation",
|
1307 |
+
data=conversation_text,
|
1308 |
+
file_name=f"disease_analysis_{file_id}.md",
|
1309 |
+
mime="text/markdown"
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
# Add a footer with clear instructions
|
1313 |
+
st.markdown("""
|
1314 |
+
---
|
1315 |
+
### How to Use
|
1316 |
+
1. Upload one or more images of crops with potential diseases
|
1317 |
+
2. View the detected diseases and their confidence scores
|
1318 |
+
3. Ask questions about the diseases, treatments, or prevention
|
1319 |
+
4. Use the 🔊 Listen button to hear the responses
|
1320 |
+
5. View previous questions and answers in the conversation history
|
1321 |
+
6. Export the entire conversation for future reference
|
1322 |
+
7. Use the sidebar to adjust settings or clear conversation history
|
1323 |
+
""")
|
startup.sh
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Start Ollama in the background
|
4 |
+
ollama serve &
|
5 |
+
|
6 |
+
# Wait for Ollama to initialize
|
7 |
+
echo "Waiting for Ollama to start..."
|
8 |
+
sleep 5
|
9 |
+
|
10 |
+
# Pull required models
|
11 |
+
echo "Pulling Ollama models..."
|
12 |
+
ollama pull llama2
|
13 |
+
#ollama pull llama3.1
|
14 |
+
#ollama pull llama3.2
|
15 |
+
#ollama pull mistral
|
16 |
+
ollama list
|
17 |
+
|
18 |
+
curl -X POST http://localhost:11434/api/generate \
|
19 |
+
-H "Content-Type: application/json" \
|
20 |
+
-d '{
|
21 |
+
"model": "llama2",
|
22 |
+
"prompt": "Hello, world!"
|
23 |
+
}'
|
24 |
+
|
25 |
+
# Start supervisord to manage processes
|
26 |
+
echo "Starting supervisord..."
|
27 |
+
exec /usr/bin/supervisord -c /etc/supervisor/conf.d/supervisord.conf
|
supervisord.conf
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[supervisord]
|
2 |
+
nodaemon=true
|
3 |
+
|
4 |
+
[program:ollama]
|
5 |
+
command=ollama serve
|
6 |
+
autostart=true
|
7 |
+
autorestart=true
|
8 |
+
stderr_logfile=/dev/stderr
|
9 |
+
stdout_logfile=/dev/stdout
|
10 |
+
|
11 |
+
[program:streamlit]
|
12 |
+
command=streamlit run app.py --server.port=8501 --server.address=0.0.0.0
|
13 |
+
autostart=true
|
14 |
+
autorestart=true
|
15 |
+
stderr_logfile=/dev/stderr
|
16 |
+
stdout_logfile=/dev/stdout
|