Uploaded 3 files
Browse files- app.py +1323 -0
- startup.sh +27 -0
- supervisord.conf +16 -0
app.py
ADDED
|
@@ -0,0 +1,1323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from ultralytics import YOLO
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from gtts import gTTS
|
| 9 |
+
import tempfile
|
| 10 |
+
import os
|
| 11 |
+
import base64
|
| 12 |
+
import ollama
|
| 13 |
+
import bcrypt
|
| 14 |
+
import sqlite3
|
| 15 |
+
import time
|
| 16 |
+
from deep_translator import GoogleTranslator
|
| 17 |
+
#from transformers import AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor, pipeline
|
| 18 |
+
#import torch
|
| 19 |
+
#from huggingface_hub import from_pretrained_keras
|
| 20 |
+
import requests
|
| 21 |
+
|
| 22 |
+
# Database setup
|
| 23 |
+
conn = sqlite3.connect('users.db')
|
| 24 |
+
c = conn.cursor()
|
| 25 |
+
c.execute('''CREATE TABLE IF NOT EXISTS users
|
| 26 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 27 |
+
username TEXT UNIQUE,
|
| 28 |
+
password_hash TEXT)''')
|
| 29 |
+
conn.commit()
|
| 30 |
+
|
| 31 |
+
# Password hashing and verification
|
| 32 |
+
def hash_password(password):
|
| 33 |
+
return bcrypt.hashpw(password.encode(), bcrypt.gensalt())
|
| 34 |
+
|
| 35 |
+
def verify_password(password, hashed_password):
|
| 36 |
+
return bcrypt.checkpw(password.encode(), hashed_password)
|
| 37 |
+
|
| 38 |
+
# Add a user
|
| 39 |
+
def add_user(username, password):
|
| 40 |
+
# Check if username already exists
|
| 41 |
+
c.execute("SELECT id FROM users WHERE username = ?", (username,))
|
| 42 |
+
result = c.fetchone()
|
| 43 |
+
|
| 44 |
+
if result:
|
| 45 |
+
return False # Username already exists
|
| 46 |
+
|
| 47 |
+
# Hash the password and insert the new user
|
| 48 |
+
password_hash = hash_password(password)
|
| 49 |
+
c.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)",
|
| 50 |
+
(username, password_hash))
|
| 51 |
+
conn.commit()
|
| 52 |
+
|
| 53 |
+
return True
|
| 54 |
+
|
| 55 |
+
# Verify a user
|
| 56 |
+
def verify_user(username, password):
|
| 57 |
+
c.execute("SELECT password_hash FROM users WHERE username = ?", (username,))
|
| 58 |
+
result = c.fetchone()
|
| 59 |
+
if result:
|
| 60 |
+
return verify_password(password, result[0])
|
| 61 |
+
return False
|
| 62 |
+
|
| 63 |
+
# Login and logout
|
| 64 |
+
def login(username, password):
|
| 65 |
+
if not username or not password:
|
| 66 |
+
st.error("Username and password are required.")
|
| 67 |
+
return False
|
| 68 |
+
if verify_user(username, password):
|
| 69 |
+
st.session_state['authenticated'] = True
|
| 70 |
+
st.session_state['username'] = username
|
| 71 |
+
st.session_state['last_activity'] = time.time()
|
| 72 |
+
return True
|
| 73 |
+
st.error("Invalid username or password.")
|
| 74 |
+
return False
|
| 75 |
+
|
| 76 |
+
def logout():
|
| 77 |
+
st.session_state['authenticated'] = False
|
| 78 |
+
st.session_state['username'] = None
|
| 79 |
+
|
| 80 |
+
# Add this at the top of your file
|
| 81 |
+
def local_css():
|
| 82 |
+
st.markdown("""
|
| 83 |
+
<style>
|
| 84 |
+
.stButton>button {
|
| 85 |
+
width: 100%;
|
| 86 |
+
border-radius: 5px;
|
| 87 |
+
height: 3em;
|
| 88 |
+
margin-top: 10px;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
.auth-container {
|
| 92 |
+
max-width: 400px;
|
| 93 |
+
margin: auto;
|
| 94 |
+
padding: 20px;
|
| 95 |
+
border-radius: 10px;
|
| 96 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 97 |
+
background-color: white;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
.auth-title {
|
| 101 |
+
text-align: center;
|
| 102 |
+
font-size: 24px;
|
| 103 |
+
margin-bottom: 20px;
|
| 104 |
+
color: #1f1f1f;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
.auth-subtitle {
|
| 108 |
+
text-align: center;
|
| 109 |
+
font-size: 16px;
|
| 110 |
+
margin-bottom: 20px;
|
| 111 |
+
color: #666;
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
.hero-section {
|
| 115 |
+
text-align: center;
|
| 116 |
+
padding: 40px 20px;
|
| 117 |
+
background: linear-gradient(to right, #4f46e5, #3b82f6);
|
| 118 |
+
color: white;
|
| 119 |
+
margin-bottom: 30px;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
.feature-container {
|
| 123 |
+
max-width: 1200px;
|
| 124 |
+
margin: auto;
|
| 125 |
+
padding: 20px;
|
| 126 |
+
display: grid;
|
| 127 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
| 128 |
+
gap: 20px;
|
| 129 |
+
margin-bottom: 40px;
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
.feature-card {
|
| 133 |
+
background: white;
|
| 134 |
+
padding: 20px;
|
| 135 |
+
border-radius: 10px;
|
| 136 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 137 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
.feature-card:hover {
|
| 141 |
+
transform: scale(1.05);
|
| 142 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
.feature-title {
|
| 146 |
+
color: #1f1f1f;
|
| 147 |
+
font-size: 18px;
|
| 148 |
+
margin-bottom: 10px;
|
| 149 |
+
font-weight: bold;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
.feature-text {
|
| 153 |
+
color: #666;
|
| 154 |
+
font-size: 14px;
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
.divider {
|
| 158 |
+
text-align: center;
|
| 159 |
+
margin: 20px 0;
|
| 160 |
+
position: relative;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
.divider:before {
|
| 164 |
+
content: "";
|
| 165 |
+
position: absolute;
|
| 166 |
+
top: 50%;
|
| 167 |
+
left: 0;
|
| 168 |
+
right: 0;
|
| 169 |
+
height: 1px;
|
| 170 |
+
background-color: #e0e0e0;
|
| 171 |
+
z-index: -1;
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
.divider span {
|
| 175 |
+
background-color: white;
|
| 176 |
+
padding: 0 10px;
|
| 177 |
+
color: #666;
|
| 178 |
+
font-size: 14px;
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
@keyframes typing {
|
| 182 |
+
0% {
|
| 183 |
+
width: 0;
|
| 184 |
+
}
|
| 185 |
+
50% {
|
| 186 |
+
width: 100%;
|
| 187 |
+
}
|
| 188 |
+
60% {
|
| 189 |
+
width: 100%;
|
| 190 |
+
}
|
| 191 |
+
100% {
|
| 192 |
+
width: 0;
|
| 193 |
+
}
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
@keyframes blink {
|
| 197 |
+
50% {
|
| 198 |
+
border-color: transparent;
|
| 199 |
+
}
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
.hero-title{
|
| 203 |
+
display: inline-block;
|
| 204 |
+
font-size: 2.5em;
|
| 205 |
+
white-space: nowrap;
|
| 206 |
+
overflow: hidden;
|
| 207 |
+
border-right: 2px solid white;
|
| 208 |
+
width: 0;
|
| 209 |
+
animation: typing 6s steps(40, end) infinite, blink 0.5s step-end infinite;
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
.hero-section {
|
| 213 |
+
text-align: center;
|
| 214 |
+
padding: 40px 20px;
|
| 215 |
+
background: linear-gradient(45deg, #4f46e5, #3b82f6);
|
| 216 |
+
background-size: 300% 300%;
|
| 217 |
+
animation: gradientShift 8s ease infinite;
|
| 218 |
+
color: white;
|
| 219 |
+
margin-bottom: 30px;
|
| 220 |
+
opacity: 0;
|
| 221 |
+
animation: fadeIn 2s ease-in-out forwards;
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
@keyframes fadeIn {
|
| 225 |
+
from {
|
| 226 |
+
opacity: 0;
|
| 227 |
+
}
|
| 228 |
+
to {
|
| 229 |
+
opacity: 1;
|
| 230 |
+
}
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
+
@keyframes gradientShift {
|
| 234 |
+
0% {
|
| 235 |
+
background-position: 0% 50%;
|
| 236 |
+
}
|
| 237 |
+
50% {
|
| 238 |
+
background-position: 100% 50%;
|
| 239 |
+
}
|
| 240 |
+
100% {
|
| 241 |
+
background-position: 0% 50%;
|
| 242 |
+
}
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
/*.feature-container {
|
| 246 |
+
display: flex;
|
| 247 |
+
justify-content: center;
|
| 248 |
+
align-items: center;
|
| 249 |
+
gap: 20px;
|
| 250 |
+
position: relative;
|
| 251 |
+
width: 100%;
|
| 252 |
+
height: 300px;
|
| 253 |
+
animation: rotate 20s linear infinite; /* Rotate the container */
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
.feature-card {
|
| 257 |
+
background: white;
|
| 258 |
+
padding: 20px;
|
| 259 |
+
border-radius: 10px;
|
| 260 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 261 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
| 262 |
+
flex-shrink: 0;
|
| 263 |
+
width: 250px;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
.feature-card:hover {
|
| 267 |
+
transform: scale(1.1);
|
| 268 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
@keyframes rotate {
|
| 272 |
+
from {
|
| 273 |
+
transform: rotate(0deg);
|
| 274 |
+
}
|
| 275 |
+
to {
|
| 276 |
+
transform: rotate(-360deg);
|
| 277 |
+
}
|
| 278 |
+
*/}
|
| 279 |
+
|
| 280 |
+
/*.feature-container {
|
| 281 |
+
display: flex;
|
| 282 |
+
justify-content: center;
|
| 283 |
+
align-items: center;
|
| 284 |
+
overflow: hidden;
|
| 285 |
+
position: relative;
|
| 286 |
+
width: 100%;
|
| 287 |
+
height: 300px;
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
.feature-track {
|
| 291 |
+
display: flex;
|
| 292 |
+
animation: circularMove 15s linear infinite;
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
.feature-card {
|
| 296 |
+
flex: 0 0 300px; /* Fixed width for each card */
|
| 297 |
+
margin: 0 20px;
|
| 298 |
+
background: white;
|
| 299 |
+
color: #333; /* Text color */
|
| 300 |
+
padding: 20px;
|
| 301 |
+
border-radius: 10px;
|
| 302 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 303 |
+
text-align: center; /* Center-align the text */
|
| 304 |
+
overflow: hidden; /* Prevent overflow issues */
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
.feature-card h3 {
|
| 308 |
+
font-size: 1.2em;
|
| 309 |
+
margin-bottom: 10px;
|
| 310 |
+
text-align: center;
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
.feature-card p {
|
| 314 |
+
font-size: 0.9em;
|
| 315 |
+
line-height: 1.4;
|
| 316 |
+
text-align: center;
|
| 317 |
+
font-weight: bold;
|
| 318 |
+
}
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
.feature-card:hover {
|
| 322 |
+
transform: scale(1.1);
|
| 323 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
@keyframes circularMove {
|
| 327 |
+
0% {
|
| 328 |
+
transform: translateX(0);
|
| 329 |
+
}
|
| 330 |
+
100% {
|
| 331 |
+
transform: translateX(-100%);
|
| 332 |
+
}
|
| 333 |
+
*/}
|
| 334 |
+
.feature-container {
|
| 335 |
+
display: flex;
|
| 336 |
+
justify-content: center;
|
| 337 |
+
align-items: center;
|
| 338 |
+
height: 400px;
|
| 339 |
+
perspective: 1000px;
|
| 340 |
+
perspective-origin: 50% 50%;
|
| 341 |
+
background: linear-gradient(to bottom, #1e293b, #0f172a); /* Dark blue gradient background */
|
| 342 |
+
overflow: hidden;
|
| 343 |
+
position: relative;
|
| 344 |
+
padding: 40px 0;
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
.feature-track {
|
| 348 |
+
position: relative;
|
| 349 |
+
width: 100%;
|
| 350 |
+
height: 100%;
|
| 351 |
+
display: flex;
|
| 352 |
+
transform-style: preserve-3d;
|
| 353 |
+
animation: carousel 15s linear infinite;
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
.feature-card {
|
| 357 |
+
position: absolute;
|
| 358 |
+
width: 300px;
|
| 359 |
+
padding: 50px;
|
| 360 |
+
background: white;
|
| 361 |
+
border-radius: 15px;
|
| 362 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3); /* Enhanced shadow for better contrast */
|
| 363 |
+
backface-visibility: hidden;
|
| 364 |
+
transform-origin: center center;
|
| 365 |
+
transition: all 0.5s ease;
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
.feature-card h3 {
|
| 369 |
+
color: #1e293b;
|
| 370 |
+
font-size: 1.5em;
|
| 371 |
+
margin-bottom: 1rem;
|
| 372 |
+
font-weight: bold;
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
.feature-card p {
|
| 376 |
+
color: #475569;
|
| 377 |
+
line-height: 1.6;
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
/* Position and animate cards */
|
| 381 |
+
.feature-card:nth-child(1) {
|
| 382 |
+
transform: rotateY(0deg) translateZ(400px) translateX(0px);
|
| 383 |
+
}
|
| 384 |
+
|
| 385 |
+
.feature-card:nth-child(2) {
|
| 386 |
+
transform: rotateY(60deg) translateZ(400px) translateX(0px);
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
.feature-card:nth-child(3) {
|
| 390 |
+
transform: rotateY(120deg) translateZ(400px) translateX(0px);
|
| 391 |
+
}
|
| 392 |
+
|
| 393 |
+
.feature-card:nth-child(4) {
|
| 394 |
+
transform: rotateY(180deg) translateZ(400px) translateX(0px);
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
.feature-card:nth-child(5) {
|
| 398 |
+
transform: rotateY(240deg) translateZ(400px) translateX(0px);
|
| 399 |
+
}
|
| 400 |
+
|
| 401 |
+
.feature-card:nth-child(6) {
|
| 402 |
+
transform: rotateY(300deg) translateZ(400px) translateX(0px);
|
| 403 |
+
}
|
| 404 |
+
|
| 405 |
+
@keyframes carousel {
|
| 406 |
+
0% {
|
| 407 |
+
transform: translateZ(-400px) rotateY(0deg);
|
| 408 |
+
}
|
| 409 |
+
100% {
|
| 410 |
+
transform: translateZ(-400px) rotateY(-360deg);
|
| 411 |
+
}
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
/* Enhanced hover effect with glow */
|
| 415 |
+
.feature-card:hover {
|
| 416 |
+
transform: scale(1.1) translateZ(450px);
|
| 417 |
+
box-shadow: 0 8px 30px rgba(255, 255, 255, 0.1); /* Glowing effect */
|
| 418 |
+
z-index: 1;
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
/* Gradient overlays for depth effect */
|
| 422 |
+
.feature-container::before,
|
| 423 |
+
.feature-container::after {
|
| 424 |
+
content: '';
|
| 425 |
+
position: absolute;
|
| 426 |
+
width: 100%;
|
| 427 |
+
height: 100px;
|
| 428 |
+
z-index: 2;
|
| 429 |
+
pointer-events: none;
|
| 430 |
+
}
|
| 431 |
+
|
| 432 |
+
.feature-container::before {
|
| 433 |
+
top: 0;
|
| 434 |
+
background: linear-gradient(to bottom, #1e293b, rgba(30, 41, 59, 0));
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
.feature-container::after {
|
| 438 |
+
bottom: 0;
|
| 439 |
+
background: linear-gradient(to top, #1e293b, rgba(30, 41, 59, 0));
|
| 440 |
+
</style>
|
| 441 |
+
""", unsafe_allow_html=True)
|
| 442 |
+
|
| 443 |
+
# Check session expiry
|
| 444 |
+
if 'authenticated' in st.session_state and st.session_state['authenticated']:
|
| 445 |
+
if time.time() - st.session_state['last_activity'] > 1800: # 30 minutes
|
| 446 |
+
logout()
|
| 447 |
+
st.rerun()
|
| 448 |
+
st.session_state['last_activity'] = time.time()
|
| 449 |
+
|
| 450 |
+
# Initialize session state for registration form visibility
|
| 451 |
+
if 'show_register_form' not in st.session_state:
|
| 452 |
+
st.session_state['show_register_form'] = False
|
| 453 |
+
|
| 454 |
+
# Replace your login/registration section with this:
|
| 455 |
+
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
|
| 456 |
+
local_css()
|
| 457 |
+
|
| 458 |
+
# Landing page hero section
|
| 459 |
+
st.markdown("""
|
| 460 |
+
<div class="hero-section">
|
| 461 |
+
<h1 class="hero-title" style="font-size: 2.5em; margin-bottom: 20px;">Crop Disease Detection System</h1>
|
| 462 |
+
<p style="font-size: 1.2em; max-width: 800px; margin: 0 auto;">
|
| 463 |
+
An advanced AI-powered system that helps farmers and agricultural experts identify and manage crop diseases effectively
|
| 464 |
+
</p>
|
| 465 |
+
</div>
|
| 466 |
+
|
| 467 |
+
""", unsafe_allow_html=True)
|
| 468 |
+
|
| 469 |
+
# Features section using Streamlit columns
|
| 470 |
+
st.subheader("Key Features")
|
| 471 |
+
col1, col2, col3 = st.columns(3)
|
| 472 |
+
|
| 473 |
+
st.markdown("""
|
| 474 |
+
<div class="feature-container">
|
| 475 |
+
<div class="feature-track">
|
| 476 |
+
<div class="feature-card">
|
| 477 |
+
<h3>🔍 Instant Detection</h3>
|
| 478 |
+
<p>Upload images of your crops and get immediate disease detection results using state-of-the-art AI technology.</p>
|
| 479 |
+
</div>
|
| 480 |
+
<div class="feature-card">
|
| 481 |
+
<h3>💡 Expert Analysis</h3>
|
| 482 |
+
<p>Receive detailed analysis and recommendations from our plant pathology expert system.</p>
|
| 483 |
+
</div>
|
| 484 |
+
<div class="feature-card">
|
| 485 |
+
<h3>📊 Detailed Reports</h3>
|
| 486 |
+
<p>Generate comprehensive reports with treatment recommendations and preventive measures.</p>
|
| 487 |
+
</div>
|
| 488 |
+
<div class="feature-card">
|
| 489 |
+
<h3>🔍 Instant Detection</h3>
|
| 490 |
+
<p>Upload images of your crops and get immediate disease detection results using state-of-the-art AI technology.</p>
|
| 491 |
+
</div>
|
| 492 |
+
<div class="feature-card">
|
| 493 |
+
<h3>💡 Expert Analysis</h3>
|
| 494 |
+
<p>Receive detailed analysis and recommendations from our plant pathology expert system.</p>
|
| 495 |
+
</div>
|
| 496 |
+
<div class="feature-card">
|
| 497 |
+
<h3>📊 Detailed Reports</h3>
|
| 498 |
+
<p>Generate comprehensive reports with treatment recommendations and preventive measures.</p>
|
| 499 |
+
</div>
|
| 500 |
+
</div>
|
| 501 |
+
</div>
|
| 502 |
+
""", unsafe_allow_html=True)
|
| 503 |
+
|
| 504 |
+
# Crop carousel section
|
| 505 |
+
st.markdown("""
|
| 506 |
+
<div class="crop-carousel-container">
|
| 507 |
+
<div class="crop-carousel-track">
|
| 508 |
+
<div class="crop-card">
|
| 509 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/b034333ddcc732299d45abf753f3fa71f6ff48ffa3338bfecd615bc2.jpg?raw=true" alt="Crop 1">
|
| 510 |
+
<h4>Corn Leaf Blight</h4>
|
| 511 |
+
<p>Corn leaf blight is a fungal disease caused primarily by Exserohilum turcicum (Northern corn leaf blight) and Bipolaris maydis (Southern corn leaf blight).</p>
|
| 512 |
+
</div>
|
| 513 |
+
<div class="crop-card">
|
| 514 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/apple.jpg?raw=true" alt="Crop 2">
|
| 515 |
+
<h4>Apple Scab Leaf</h4>
|
| 516 |
+
<p>Apple scab is a fungal disease caused by Venturia inaequalis. It primarily affects apple and crabapple trees.</p>
|
| 517 |
+
</div>
|
| 518 |
+
<div class="crop-card">
|
| 519 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/tomato.jpg?raw=true" alt="Crop 3">
|
| 520 |
+
<h4>Tomato Leaf Late Blight</h4>
|
| 521 |
+
<p>Late blight of tomato is caused by the oomycete pathogen Phytophthora infestans. It is characterized by dark, water-soaked lesions on leaves, stems, and fruit.</p>
|
| 522 |
+
</div>
|
| 523 |
+
<div class="crop-card">
|
| 524 |
+
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/918d1d7a3dda5ce8fbdabf92e5bf38f104efd129ee09adcc6d1ad46c.jpg?raw=true" alt="Crop 4">
|
| 525 |
+
<h4>Tomato Leaf Yellow Virus</h4>
|
| 526 |
+
<p>Tomato leaf yellow virus (often referred to as Tomato yellow leaf curl virus, or TYLCV) is a viral disease transmitted by whiteflies. It causes yellowing and curling of tomato leaves.</p>
|
| 527 |
+
</div>
|
| 528 |
+
</div>
|
| 529 |
+
</div>
|
| 530 |
+
""", unsafe_allow_html=True)
|
| 531 |
+
|
| 532 |
+
st.markdown("""
|
| 533 |
+
<style>
|
| 534 |
+
.crop-carousel-container {
|
| 535 |
+
width: 100%;
|
| 536 |
+
max-width: 800px;
|
| 537 |
+
margin: auto;
|
| 538 |
+
overflow: hidden;
|
| 539 |
+
position: relative;
|
| 540 |
+
}
|
| 541 |
+
|
| 542 |
+
.crop-carousel-track {
|
| 543 |
+
display: flex;
|
| 544 |
+
animation: moveLeft 20s linear infinite; /* Move right to left */
|
| 545 |
+
}
|
| 546 |
+
|
| 547 |
+
.crop-card {
|
| 548 |
+
flex: 0 0 300px;
|
| 549 |
+
margin: 0 20px;
|
| 550 |
+
background: white;
|
| 551 |
+
color: #333;
|
| 552 |
+
padding: 20px;
|
| 553 |
+
border-radius: 10px;
|
| 554 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 555 |
+
text-align: center;
|
| 556 |
+
overflow: hidden;
|
| 557 |
+
}
|
| 558 |
+
|
| 559 |
+
.crop-card img {
|
| 560 |
+
width: 100%;
|
| 561 |
+
height: 150px;
|
| 562 |
+
object-fit: cover;
|
| 563 |
+
border-radius: 10px;
|
| 564 |
+
margin-bottom: 10px;
|
| 565 |
+
}
|
| 566 |
+
|
| 567 |
+
.crop-card h4 {
|
| 568 |
+
font-size: 1.2em;
|
| 569 |
+
margin: 10px 0;
|
| 570 |
+
}
|
| 571 |
+
|
| 572 |
+
.crop-card p {
|
| 573 |
+
font-size: 0.9em;
|
| 574 |
+
line-height: 1.4;
|
| 575 |
+
color: #555;
|
| 576 |
+
}
|
| 577 |
+
|
| 578 |
+
@keyframes moveLeft {
|
| 579 |
+
0% {
|
| 580 |
+
transform: translateX(100%);
|
| 581 |
+
}
|
| 582 |
+
100% {
|
| 583 |
+
transform: translateX(-100%);
|
| 584 |
+
}
|
| 585 |
+
}
|
| 586 |
+
</style>
|
| 587 |
+
""", unsafe_allow_html=True)
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
# Add some spacing
|
| 591 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
| 592 |
+
|
| 593 |
+
# Authentication container
|
| 594 |
+
st.markdown('<div class="auth-container">', unsafe_allow_html=True)
|
| 595 |
+
|
| 596 |
+
# Initialize password reset state
|
| 597 |
+
if 'show_reset_form' not in st.session_state:
|
| 598 |
+
st.session_state['show_reset_form'] = False
|
| 599 |
+
|
| 600 |
+
# Update password function
|
| 601 |
+
def update_password(username, new_password):
|
| 602 |
+
conn = sqlite3.connect('users.db')
|
| 603 |
+
c = conn.cursor()
|
| 604 |
+
|
| 605 |
+
# Check if username exists
|
| 606 |
+
c.execute("SELECT id FROM users WHERE username = ?", (username,))
|
| 607 |
+
if not c.fetchone():
|
| 608 |
+
return False
|
| 609 |
+
|
| 610 |
+
# Update password
|
| 611 |
+
password_hash = bcrypt.hashpw(new_password.encode(), bcrypt.gensalt())
|
| 612 |
+
c.execute("UPDATE users SET password_hash = ? WHERE username = ?",
|
| 613 |
+
(password_hash, username))
|
| 614 |
+
conn.commit()
|
| 615 |
+
conn.close()
|
| 616 |
+
return True
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
# Update the authentication container section
|
| 620 |
+
if not st.session_state.get('authenticated', False):
|
| 621 |
+
st.markdown('<div class="auth-container">', unsafe_allow_html=True)
|
| 622 |
+
|
| 623 |
+
# Reset Password Form
|
| 624 |
+
if st.session_state.get('show_reset_form', False):
|
| 625 |
+
st.markdown('<h1 class="auth-title">Reset Password</h1>', unsafe_allow_html=True)
|
| 626 |
+
st.markdown('<p class="auth-subtitle">Enter your username and new password</p>', unsafe_allow_html=True)
|
| 627 |
+
|
| 628 |
+
with st.form("reset_form"):
|
| 629 |
+
username = st.text_input("Username")
|
| 630 |
+
new_password = st.text_input("New Password", type="password")
|
| 631 |
+
confirm_password = st.text_input("Confirm Password", type="password")
|
| 632 |
+
submit = st.form_submit_button("Reset Password")
|
| 633 |
+
|
| 634 |
+
if submit:
|
| 635 |
+
if not username or not new_password or not confirm_password:
|
| 636 |
+
st.error("All fields are required.")
|
| 637 |
+
elif new_password != confirm_password:
|
| 638 |
+
st.error("Passwords do not match.")
|
| 639 |
+
elif update_password(username, new_password):
|
| 640 |
+
st.success("Password updated successfully!")
|
| 641 |
+
st.session_state['show_reset_form'] = False
|
| 642 |
+
time.sleep(1)
|
| 643 |
+
st.rerun()
|
| 644 |
+
else:
|
| 645 |
+
st.error("Username not found.")
|
| 646 |
+
|
| 647 |
+
if st.button("Back to Login"):
|
| 648 |
+
st.session_state['show_reset_form'] = False
|
| 649 |
+
st.rerun()
|
| 650 |
+
|
| 651 |
+
# Registration Form
|
| 652 |
+
elif st.session_state.get('show_register_form', False):
|
| 653 |
+
st.markdown('<h1 class="auth-title">Create Account</h1>', unsafe_allow_html=True)
|
| 654 |
+
st.markdown('<p class="auth-subtitle">Sign up to get started</p>', unsafe_allow_html=True)
|
| 655 |
+
|
| 656 |
+
with st.form("register_form"):
|
| 657 |
+
new_username = st.text_input("Username")
|
| 658 |
+
new_password = st.text_input("Password", type="password")
|
| 659 |
+
submit_button = st.form_submit_button("Create Account")
|
| 660 |
+
|
| 661 |
+
if submit_button:
|
| 662 |
+
if new_username and new_password:
|
| 663 |
+
if add_user(new_username, new_password):
|
| 664 |
+
st.success("Account created successfully!")
|
| 665 |
+
st.session_state['show_register_form'] = False
|
| 666 |
+
time.sleep(1)
|
| 667 |
+
st.rerun()
|
| 668 |
+
else:
|
| 669 |
+
st.error("Username already exists.")
|
| 670 |
+
else:
|
| 671 |
+
st.error("Username and password are required.")
|
| 672 |
+
|
| 673 |
+
st.markdown('<div class="divider"><span>OR</span></div>', unsafe_allow_html=True)
|
| 674 |
+
if st.button("Back to Login"):
|
| 675 |
+
st.session_state['show_register_form'] = False
|
| 676 |
+
st.rerun()
|
| 677 |
+
|
| 678 |
+
# Login Form (default)
|
| 679 |
+
else:
|
| 680 |
+
st.markdown('<h1 class="auth-title">Welcome Back</h1>', unsafe_allow_html=True)
|
| 681 |
+
st.markdown('<p class="auth-subtitle">Sign in to your account</p>', unsafe_allow_html=True)
|
| 682 |
+
|
| 683 |
+
with st.form("login_form"):
|
| 684 |
+
username = st.text_input("Username")
|
| 685 |
+
password = st.text_input("Password", type="password")
|
| 686 |
+
cols = st.columns([1, 1])
|
| 687 |
+
submit_button = cols[0].form_submit_button("Sign In")
|
| 688 |
+
forgot_password = cols[1].form_submit_button("Forgot Password?")
|
| 689 |
+
|
| 690 |
+
if submit_button:
|
| 691 |
+
if login(username, password):
|
| 692 |
+
st.success("Logged in successfully!")
|
| 693 |
+
time.sleep(1)
|
| 694 |
+
st.rerun()
|
| 695 |
+
elif forgot_password:
|
| 696 |
+
st.session_state['show_reset_form'] = True
|
| 697 |
+
st.rerun()
|
| 698 |
+
|
| 699 |
+
st.markdown('<div class="divider"><span>OR</span></div>', unsafe_allow_html=True)
|
| 700 |
+
if st.button("Create New Account"):
|
| 701 |
+
st.session_state['show_register_form'] = True
|
| 702 |
+
st.rerun()
|
| 703 |
+
|
| 704 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 705 |
+
|
| 706 |
+
# Update the footer section (replace the existing footer with this)
|
| 707 |
+
st.markdown("""
|
| 708 |
+
<div style="background: linear-gradient(to right, #1e293b, #334155); color: white; padding: 40px 0; margin-top: 40px;">
|
| 709 |
+
<div style="max-width: 1200px; margin: auto; padding: 0 20px;">
|
| 710 |
+
<div style="display: flex; flex-wrap: wrap; justify-content: space-between; gap: 40px;">
|
| 711 |
+
<!-- About Section -->
|
| 712 |
+
<div style="flex: 1; min-width: 250px;">
|
| 713 |
+
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">About Our Platform</h3>
|
| 714 |
+
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 20px;">
|
| 715 |
+
Our AI-powered platform revolutionizes crop disease detection and management.
|
| 716 |
+
We combine cutting-edge technology with agricultural expertise to protect your crops
|
| 717 |
+
and maximize your yield.
|
| 718 |
+
</p>
|
| 719 |
+
</div>
|
| 720 |
+
<div style="flex: 1; min-width: 250px;">
|
| 721 |
+
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">Key Features</h3>
|
| 722 |
+
<ul style="list-style: none; padding: 0; color: #e2e8f0;">
|
| 723 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
| 724 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Real-time Disease Detection
|
| 725 |
+
</li>
|
| 726 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
| 727 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Multi-language Support
|
| 728 |
+
</li>
|
| 729 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
| 730 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Expert Analysis Reports
|
| 731 |
+
</li>
|
| 732 |
+
<li style="margin-bottom: 10px; display: flex; align-items: center;">
|
| 733 |
+
<span style="color: #60a5fa; margin-right: 10px;">✓</span> Treatment Recommendations
|
| 734 |
+
</li>
|
| 735 |
+
</ul>
|
| 736 |
+
</div>
|
| 737 |
+
<div style="flex: 1; min-width: 250px;">
|
| 738 |
+
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">Contact Us</h3>
|
| 739 |
+
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 10px;">
|
| 740 |
+
<span style="color: #60a5fa;">Email:</span> [email protected]
|
| 741 |
+
</p>
|
| 742 |
+
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 20px;">
|
| 743 |
+
<span style="color: #60a5fa;">Phone:</span> +1 (234) 567-8900
|
| 744 |
+
</p>
|
| 745 |
+
<div style="display: flex; gap: 15px; margin-top: 20px;">
|
| 746 |
+
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
|
| 747 |
+
<span>📱</span>
|
| 748 |
+
</a>
|
| 749 |
+
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
|
| 750 |
+
<span>💬</span>
|
| 751 |
+
</a>
|
| 752 |
+
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
|
| 753 |
+
<span>📨</span>
|
| 754 |
+
</a>
|
| 755 |
+
</div>
|
| 756 |
+
</div>
|
| 757 |
+
</div>
|
| 758 |
+
<div style="border-top: 1px solid #4b5563; margin-top: 40px; padding-top: 20px; text-align: center;">
|
| 759 |
+
<p style="color: #e2e8f0; font-size: 0.9em;">
|
| 760 |
+
© 2025 Crop Disease Detection System. All rights reserved.
|
| 761 |
+
</p>
|
| 762 |
+
<div style="margin-top: 10px;">
|
| 763 |
+
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">Privacy Policy</a>
|
| 764 |
+
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">Terms of Service</a>
|
| 765 |
+
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">FAQ</a>
|
| 766 |
+
</div>
|
| 767 |
+
</div>
|
| 768 |
+
</div>
|
| 769 |
+
</div>
|
| 770 |
+
""", unsafe_allow_html=True)
|
| 771 |
+
|
| 772 |
+
st.stop()
|
| 773 |
+
|
| 774 |
+
# Update database schema to include comments
|
| 775 |
+
def setup_feedback_db():
|
| 776 |
+
conn = sqlite3.connect('customer_feedback.db')
|
| 777 |
+
c = conn.cursor()
|
| 778 |
+
c.execute('''CREATE TABLE IF NOT EXISTS customer_feedback
|
| 779 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 780 |
+
question TEXT,
|
| 781 |
+
response TEXT,
|
| 782 |
+
feedback_type TEXT,
|
| 783 |
+
comment_type TEXT,
|
| 784 |
+
custom_comment TEXT,
|
| 785 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
| 786 |
+
conn.commit()
|
| 787 |
+
return conn, c
|
| 788 |
+
|
| 789 |
+
def save_feedback(question, response, feedback_type, comment_type=None, custom_comment=None):
|
| 790 |
+
conn, c = setup_feedback_db()
|
| 791 |
+
try:
|
| 792 |
+
c.execute("""INSERT INTO customer_feedback
|
| 793 |
+
(question, response, feedback_type, comment_type, custom_comment)
|
| 794 |
+
VALUES (?, ?, ?, ?, ?)""",
|
| 795 |
+
(question, response, feedback_type, comment_type, custom_comment))
|
| 796 |
+
conn.commit()
|
| 797 |
+
return True
|
| 798 |
+
except Exception as e:
|
| 799 |
+
st.error(f"Error saving feedback: {e}")
|
| 800 |
+
return False
|
| 801 |
+
finally:
|
| 802 |
+
conn.close()
|
| 803 |
+
|
| 804 |
+
# Update the conversation display section
|
| 805 |
+
def display_feedback_buttons(file_id, index, question, response):
|
| 806 |
+
# Suggested comments
|
| 807 |
+
SUGGESTED_COMMENTS = [
|
| 808 |
+
"Inaccurate information",
|
| 809 |
+
"Unclear explanation",
|
| 810 |
+
"Missing details",
|
| 811 |
+
"Not relevant to question",
|
| 812 |
+
"Technical error",
|
| 813 |
+
"Other"
|
| 814 |
+
]
|
| 815 |
+
|
| 816 |
+
# Initialize session state for feedback if it doesn't exist
|
| 817 |
+
if f"feedback_{file_id}_{index}" not in st.session_state:
|
| 818 |
+
st.session_state[f"feedback_{file_id}_{index}"] = {
|
| 819 |
+
"feedback_type": None, # Stores "👍" or "👎"
|
| 820 |
+
"comment": None, # Stores the user's comment
|
| 821 |
+
"submitted": False # Tracks whether feedback has been submitted
|
| 822 |
+
}
|
| 823 |
+
|
| 824 |
+
col1, col2 = st.columns([1, 4])
|
| 825 |
+
with col1:
|
| 826 |
+
if st.button("👍", key=f"helpful_{file_id}_{index}"):
|
| 827 |
+
# Save positive feedback immediately
|
| 828 |
+
save_feedback(question, response, "👍")
|
| 829 |
+
st.success("Feedback saved!")
|
| 830 |
+
# Update session state to indicate feedback has been submitted
|
| 831 |
+
st.session_state[f"feedback_{file_id}_{index}"]["submitted"] = True
|
| 832 |
+
return
|
| 833 |
+
|
| 834 |
+
with col2:
|
| 835 |
+
if st.button("👎", key=f"not_helpful_{file_id}_{index}"):
|
| 836 |
+
# Store the feedback type in session state
|
| 837 |
+
st.session_state[f"feedback_{file_id}_{index}"]["feedback_type"] = "👎"
|
| 838 |
+
|
| 839 |
+
# Check if feedback_type is "👎" before showing the comment input field
|
| 840 |
+
if st.session_state[f"feedback_{file_id}_{index}"].get("feedback_type") == "👎":
|
| 841 |
+
# Display suggested comments in a dropdown menu
|
| 842 |
+
selected_comment = st.selectbox(
|
| 843 |
+
"What was the issue?",
|
| 844 |
+
options=SUGGESTED_COMMENTS,
|
| 845 |
+
key=f"suggested_comment_{file_id}_{index}"
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
# If the user selects "Other", allow them to provide a custom comment
|
| 849 |
+
custom_comment = None
|
| 850 |
+
if selected_comment == "Other":
|
| 851 |
+
custom_comment = st.text_area(
|
| 852 |
+
"Please describe the issue:",
|
| 853 |
+
key=f"custom_comment_{file_id}_{index}"
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
# Submit Feedback button
|
| 857 |
+
if st.button("Submit Feedback", key=f"submit_{file_id}_{index}"):
|
| 858 |
+
# Save feedback to the database
|
| 859 |
+
save_feedback(
|
| 860 |
+
question,
|
| 861 |
+
response,
|
| 862 |
+
st.session_state[f"feedback_{file_id}_{index}"]["feedback_type"],
|
| 863 |
+
custom_comment if selected_comment == "Other" else selected_comment
|
| 864 |
+
)
|
| 865 |
+
st.success("Thank you for your feedback!")
|
| 866 |
+
# Update session state to indicate feedback has been submitted
|
| 867 |
+
st.session_state[f"feedback_{file_id}_{index}"]["submitted"] = True
|
| 868 |
+
return
|
| 869 |
+
|
| 870 |
+
# Model configuration
|
| 871 |
+
SUPPORTED_MODELS = {
|
| 872 |
+
"llama3.2": {
|
| 873 |
+
"name": "llama3.2",
|
| 874 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
| 875 |
+
"supports_vision": False
|
| 876 |
+
},
|
| 877 |
+
"llama3.1": {
|
| 878 |
+
"name": "llama3.1",
|
| 879 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
| 880 |
+
"supports_vision": False
|
| 881 |
+
},
|
| 882 |
+
"llama2": {
|
| 883 |
+
"name": "llama2",
|
| 884 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
| 885 |
+
"supports_vision": False
|
| 886 |
+
},
|
| 887 |
+
"llava": {
|
| 888 |
+
"name": "llava",
|
| 889 |
+
"system_prompt": "You are a helpful plant pathology expert assistant with vision capabilities.",
|
| 890 |
+
"supports_vision": True,
|
| 891 |
+
"vision_prompt": "Analyze the image and describe the diseases present."
|
| 892 |
+
},
|
| 893 |
+
"mistral": {
|
| 894 |
+
"name": "mistral",
|
| 895 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
| 896 |
+
"supports_vision": False
|
| 897 |
+
},
|
| 898 |
+
"gemma": {
|
| 899 |
+
"name": "gemma",
|
| 900 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
| 901 |
+
"supports_vision": False
|
| 902 |
+
},
|
| 903 |
+
"jyan1/paligemma-mix-224": {
|
| 904 |
+
"name": "jyan1/paligemma-mix-224",
|
| 905 |
+
"system_prompt": "You are a helpful plant pathology expert assistant.",
|
| 906 |
+
"supports_vision": True
|
| 907 |
+
}
|
| 908 |
+
}
|
| 909 |
+
|
| 910 |
+
# Initialize session state for conversation history if it doesn't exist
|
| 911 |
+
if 'conversation_history' not in st.session_state:
|
| 912 |
+
st.session_state.conversation_history = {}
|
| 913 |
+
|
| 914 |
+
# Load YOLOv8 model
|
| 915 |
+
yolo_model = YOLO("models/best.pt")
|
| 916 |
+
|
| 917 |
+
def preprocess_image(image, target_size=(224, 224)):
|
| 918 |
+
"""
|
| 919 |
+
Preprocess the image for vision-capable models.
|
| 920 |
+
"""
|
| 921 |
+
image = Image.fromarray(image)
|
| 922 |
+
image = image.resize(target_size)
|
| 923 |
+
return image
|
| 924 |
+
|
| 925 |
+
def text_to_speech(text, language='en'):
|
| 926 |
+
"""Convert text to speech using gTTS"""
|
| 927 |
+
try:
|
| 928 |
+
# Create temporary file
|
| 929 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
|
| 930 |
+
# Generate audio file
|
| 931 |
+
tts = gTTS(text=text, lang=language, slow=False)
|
| 932 |
+
tts.save(temp_audio.name)
|
| 933 |
+
|
| 934 |
+
# Read the audio file
|
| 935 |
+
with open(temp_audio.name, 'rb') as audio_file:
|
| 936 |
+
audio_bytes = audio_file.read()
|
| 937 |
+
|
| 938 |
+
# Clean up
|
| 939 |
+
os.unlink(temp_audio.name)
|
| 940 |
+
|
| 941 |
+
return audio_bytes
|
| 942 |
+
except Exception as e:
|
| 943 |
+
st.error(f"Error generating speech: {str(e)}")
|
| 944 |
+
return None
|
| 945 |
+
|
| 946 |
+
def check_ollama_connection():
|
| 947 |
+
try:
|
| 948 |
+
response = requests.get("http://localhost:11434")
|
| 949 |
+
return response.status_code == 200
|
| 950 |
+
except Exception as e:
|
| 951 |
+
return False
|
| 952 |
+
|
| 953 |
+
def generate_ollama_response(prompt, model_name="llama2", conversation_history=None, image_data=None):
|
| 954 |
+
try:
|
| 955 |
+
if model_name not in SUPPORTED_MODELS:
|
| 956 |
+
return f"Error: Model {model_name} is not supported."
|
| 957 |
+
|
| 958 |
+
model_config = SUPPORTED_MODELS[model_name]
|
| 959 |
+
|
| 960 |
+
# Build the messages array
|
| 961 |
+
messages = [
|
| 962 |
+
{
|
| 963 |
+
"role": "system",
|
| 964 |
+
"content": model_config["system_prompt"]
|
| 965 |
+
}
|
| 966 |
+
]
|
| 967 |
+
|
| 968 |
+
# Add conversation history
|
| 969 |
+
if conversation_history:
|
| 970 |
+
for entry in conversation_history:
|
| 971 |
+
if len(entry) >= 2: # Handle tuples with 2 or 3 values
|
| 972 |
+
question, response = entry[:2]
|
| 973 |
+
messages.extend([
|
| 974 |
+
{"role": "user", "content": question},
|
| 975 |
+
{"role": "assistant", "content": response}
|
| 976 |
+
])
|
| 977 |
+
|
| 978 |
+
# Handle vision models differently
|
| 979 |
+
if model_config["supports_vision"] and image_data is not None:
|
| 980 |
+
if isinstance(image_data, np.ndarray):
|
| 981 |
+
image = Image.fromarray(image_data)
|
| 982 |
+
buffered = BytesIO()
|
| 983 |
+
image.save(buffered, format="JPEG")
|
| 984 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 985 |
+
|
| 986 |
+
messages.append({
|
| 987 |
+
"role": "user",
|
| 988 |
+
"content": [
|
| 989 |
+
{"type": "text", "text": prompt},
|
| 990 |
+
{"type": "image", "image": img_str}
|
| 991 |
+
]
|
| 992 |
+
})
|
| 993 |
+
else:
|
| 994 |
+
messages.append({
|
| 995 |
+
"role": "user",
|
| 996 |
+
"content": prompt
|
| 997 |
+
})
|
| 998 |
+
|
| 999 |
+
# Make an API call to Ollama
|
| 1000 |
+
api_url = "http://localhost:11434/api/generate" # Ollama API endpoint
|
| 1001 |
+
payload = {
|
| 1002 |
+
"model": model_config["name"],
|
| 1003 |
+
"prompt": prompt, # Use the prompt directly
|
| 1004 |
+
"stream": False # Set to True if you want streaming responses
|
| 1005 |
+
}
|
| 1006 |
+
|
| 1007 |
+
# Send the request
|
| 1008 |
+
response = requests.post(api_url, json=payload)
|
| 1009 |
+
|
| 1010 |
+
# Check for errors
|
| 1011 |
+
if response.status_code != 200:
|
| 1012 |
+
return f"Error: API request failed with status code {response.status_code}. Response: {response.text}"
|
| 1013 |
+
|
| 1014 |
+
# Parse the response
|
| 1015 |
+
response_data = response.json()
|
| 1016 |
+
|
| 1017 |
+
# Check if the response contains the expected key
|
| 1018 |
+
if "response" in response_data:
|
| 1019 |
+
return response_data["response"]
|
| 1020 |
+
else:
|
| 1021 |
+
return f"Error: Unexpected response format: {response_data}"
|
| 1022 |
+
|
| 1023 |
+
except Exception as e:
|
| 1024 |
+
return f"Error connecting to Ollama API: {str(e)}"
|
| 1025 |
+
|
| 1026 |
+
def generate_improved_description(detected_classes, class_names, user_text, image_details=None, conversation_history=None):
|
| 1027 |
+
"""
|
| 1028 |
+
Generate a more detailed and contextual description using Ollama
|
| 1029 |
+
"""
|
| 1030 |
+
detected_objects = [class_names[cls] for cls in detected_classes]
|
| 1031 |
+
|
| 1032 |
+
# Create base context about detected diseases
|
| 1033 |
+
disease_context = f"Detected diseases: {', '.join(detected_objects)}"
|
| 1034 |
+
|
| 1035 |
+
# Different prompt structure for initial vs. follow-up questions
|
| 1036 |
+
if not conversation_history:
|
| 1037 |
+
base_prompt = f"""As an expert plant pathologist, analyze the following crop diseases detected in the image: {', '.join(detected_objects)}.
|
| 1038 |
+
|
| 1039 |
+
For each detected disease, provide a structured analysis following this format:
|
| 1040 |
+
|
| 1041 |
+
1. Disease Name: [Name]
|
| 1042 |
+
- Pathogen: [Causative organism]
|
| 1043 |
+
- Severity Level: [Based on visual symptoms]
|
| 1044 |
+
- Key Symptoms:
|
| 1045 |
+
* [Symptom 1]
|
| 1046 |
+
* [Symptom 2]
|
| 1047 |
+
- Economic Impact:
|
| 1048 |
+
* [Brief description of potential crop losses]
|
| 1049 |
+
- Treatment Options:
|
| 1050 |
+
* Immediate actions: [Short-term solutions]
|
| 1051 |
+
* Long-term management: [Preventive measures]
|
| 1052 |
+
- Environmental Conditions:
|
| 1053 |
+
* Favorable conditions for disease development
|
| 1054 |
+
* Risk factors
|
| 1055 |
+
|
| 1056 |
+
2. Recommendations:
|
| 1057 |
+
- Immediate Steps:
|
| 1058 |
+
* [Action items for immediate control]
|
| 1059 |
+
- Prevention Strategy:
|
| 1060 |
+
* [Long-term prevention measures]
|
| 1061 |
+
- Monitoring Protocol:
|
| 1062 |
+
* [What to watch for]
|
| 1063 |
+
|
| 1064 |
+
Initial Question/Context: {user_text if user_text else "Provide a general analysis"}
|
| 1065 |
+
"""
|
| 1066 |
+
else:
|
| 1067 |
+
base_prompt = f"""Context: {disease_context}
|
| 1068 |
+
|
| 1069 |
+
Previous conversation context has been provided above. Please address the following follow-up question while maintaining consistency with previous responses:
|
| 1070 |
+
|
| 1071 |
+
{user_text}
|
| 1072 |
+
|
| 1073 |
+
Provide a detailed response that builds upon the previous context and specifically addresses this question."""
|
| 1074 |
+
|
| 1075 |
+
# Get the selected model from session state or default to llama2
|
| 1076 |
+
selected_model = st.session_state.get('selected_model', 'llama2')
|
| 1077 |
+
|
| 1078 |
+
return generate_ollama_response(
|
| 1079 |
+
base_prompt,
|
| 1080 |
+
model_name=selected_model,
|
| 1081 |
+
conversation_history=conversation_history,
|
| 1082 |
+
image_data=image_details.get("image_data") if image_details else None
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
def inference(image):
|
| 1086 |
+
"""
|
| 1087 |
+
Enhanced inference function with confidence scores and bounding box information
|
| 1088 |
+
"""
|
| 1089 |
+
results = yolo_model(image, conf=0.4)
|
| 1090 |
+
infer = np.zeros(image.shape, dtype=np.uint8)
|
| 1091 |
+
classes = dict()
|
| 1092 |
+
names_infer = []
|
| 1093 |
+
confidence_scores = []
|
| 1094 |
+
bounding_boxes = []
|
| 1095 |
+
|
| 1096 |
+
for r in results:
|
| 1097 |
+
infer = r.plot()
|
| 1098 |
+
classes = r.names
|
| 1099 |
+
names_infer = r.boxes.cls.tolist()
|
| 1100 |
+
confidence_scores = r.boxes.conf.tolist()
|
| 1101 |
+
bounding_boxes = r.boxes.xyxy.tolist()
|
| 1102 |
+
|
| 1103 |
+
return infer, names_infer, classes, confidence_scores, bounding_boxes
|
| 1104 |
+
|
| 1105 |
+
# Streamlit application
|
| 1106 |
+
st.title("Interactive Crop Disease Detection and Analysis🌾🌿🥬☘️")
|
| 1107 |
+
st.write(f"Welcome, {st.session_state['username']}!😊")
|
| 1108 |
+
|
| 1109 |
+
# Logout button
|
| 1110 |
+
if st.button("Logout"):
|
| 1111 |
+
logout()
|
| 1112 |
+
st.rerun()
|
| 1113 |
+
|
| 1114 |
+
# Add sidebar for configuration
|
| 1115 |
+
with st.sidebar:
|
| 1116 |
+
st.header("Settings")
|
| 1117 |
+
selected_model = st.selectbox(
|
| 1118 |
+
"Select LLM Model",
|
| 1119 |
+
list(SUPPORTED_MODELS.keys()),
|
| 1120 |
+
index=0, # Default to first model (bart-large-cnn)
|
| 1121 |
+
help="Choose the Ollama model to use for analysis"
|
| 1122 |
+
)
|
| 1123 |
+
# Store the selected model in session state
|
| 1124 |
+
st.session_state['selected_model'] = selected_model
|
| 1125 |
+
|
| 1126 |
+
if SUPPORTED_MODELS[selected_model]["supports_vision"]:
|
| 1127 |
+
st.info("This model supports vision capabilities and can analyze images directly.")
|
| 1128 |
+
|
| 1129 |
+
confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
|
| 1130 |
+
show_confidence = st.checkbox("Show Confidence Scores", value=True)
|
| 1131 |
+
show_bbox = st.checkbox("Show Bounding Boxes", value=True)
|
| 1132 |
+
|
| 1133 |
+
# TTS Settings
|
| 1134 |
+
st.header("Text-to-Speech Settings")
|
| 1135 |
+
tts_enabled = st.checkbox("Enable Text-to-Speech", value=True)
|
| 1136 |
+
if tts_enabled:
|
| 1137 |
+
language = st.selectbox("Speech Language",
|
| 1138 |
+
options=['en', 'es', 'fr', 'de'],
|
| 1139 |
+
format_func=lambda x: {
|
| 1140 |
+
'en': 'English',
|
| 1141 |
+
'es': 'Spanish',
|
| 1142 |
+
'fr': 'French',
|
| 1143 |
+
'de': 'German'
|
| 1144 |
+
}[x],
|
| 1145 |
+
help="Select speech language")
|
| 1146 |
+
|
| 1147 |
+
# Add option to clear conversation history
|
| 1148 |
+
if st.button("Clear All Conversations"):
|
| 1149 |
+
st.session_state.conversation_history = {}
|
| 1150 |
+
st.success("Conversation history cleared!")
|
| 1151 |
+
|
| 1152 |
+
# Language selection
|
| 1153 |
+
language = st.selectbox(
|
| 1154 |
+
"Select Language",
|
| 1155 |
+
options=['en', 'es', 'fr', 'de'], # Add more languages as needed
|
| 1156 |
+
format_func=lambda x: {
|
| 1157 |
+
'en': 'English',
|
| 1158 |
+
'es': 'Spanish',
|
| 1159 |
+
'fr': 'French',
|
| 1160 |
+
'de': 'German'
|
| 1161 |
+
}[x],
|
| 1162 |
+
help="Select your preferred language"
|
| 1163 |
+
)
|
| 1164 |
+
|
| 1165 |
+
# Main content
|
| 1166 |
+
uploaded_files = st.file_uploader("Upload images for disease detection", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
| 1167 |
+
|
| 1168 |
+
if uploaded_files:
|
| 1169 |
+
for uploaded_file in uploaded_files:
|
| 1170 |
+
file_id = uploaded_file.name
|
| 1171 |
+
|
| 1172 |
+
# Initialize conversation history for this image if it doesn't exist
|
| 1173 |
+
if file_id not in st.session_state.conversation_history:
|
| 1174 |
+
st.session_state.conversation_history[file_id] = []
|
| 1175 |
+
|
| 1176 |
+
st.header(f"Analysis for {file_id}")
|
| 1177 |
+
|
| 1178 |
+
# Create columns for side-by-side display
|
| 1179 |
+
col1, col2 = st.columns(2)
|
| 1180 |
+
|
| 1181 |
+
# Process image
|
| 1182 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 1183 |
+
image = cv2.imdecode(file_bytes, 1)
|
| 1184 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1185 |
+
|
| 1186 |
+
# Display original image
|
| 1187 |
+
with col1:
|
| 1188 |
+
st.subheader("Original Image")
|
| 1189 |
+
st.image(image, use_container_width=True)
|
| 1190 |
+
|
| 1191 |
+
# Process and display results
|
| 1192 |
+
with st.spinner("Processing image..."):
|
| 1193 |
+
infer_image, classes_in_image, classes_in_dataset, confidences, boxes = inference(image)
|
| 1194 |
+
|
| 1195 |
+
with col2:
|
| 1196 |
+
st.subheader("Detected Diseases")
|
| 1197 |
+
st.image(infer_image, use_container_width=True)
|
| 1198 |
+
|
| 1199 |
+
# Display detection details
|
| 1200 |
+
if show_confidence:
|
| 1201 |
+
st.subheader("Detection Details")
|
| 1202 |
+
for cls, conf in zip(classes_in_image, confidences):
|
| 1203 |
+
st.write(f"- {classes_in_dataset[cls]}: {conf:.2%} confidence")
|
| 1204 |
+
|
| 1205 |
+
# Display conversation history
|
| 1206 |
+
if st.session_state.conversation_history[file_id]:
|
| 1207 |
+
st.subheader("Conversation History")
|
| 1208 |
+
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
|
| 1209 |
+
question, response = entry[:2]
|
| 1210 |
+
|
| 1211 |
+
with st.expander(f"Q{i+1}: {question[:50]}...", expanded=False):
|
| 1212 |
+
st.write("**Question:**", question)
|
| 1213 |
+
st.write("**Response:**", response)
|
| 1214 |
+
|
| 1215 |
+
# Display feedback buttons and handle comment collection
|
| 1216 |
+
display_feedback_buttons(file_id, i, question, response)
|
| 1217 |
+
|
| 1218 |
+
# Audio playback option
|
| 1219 |
+
if tts_enabled:
|
| 1220 |
+
if st.button("🔊 Listen", key=f"listen_history_{file_id}_{i}"):
|
| 1221 |
+
with st.spinner("Generating audio..."):
|
| 1222 |
+
audio_bytes = text_to_speech(response, language)
|
| 1223 |
+
if audio_bytes:
|
| 1224 |
+
st.audio(audio_bytes, format='audio/mp3')
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
# User input for questions
|
| 1228 |
+
st.subheader("Ask Questions")
|
| 1229 |
+
user_text = st.text_area(
|
| 1230 |
+
"Enter your question about the detected diseases:",
|
| 1231 |
+
placeholder="Example: What are the best treatment options for these diseases? What preventive measures should I take?",
|
| 1232 |
+
key=f"question_{file_id}"
|
| 1233 |
+
)
|
| 1234 |
+
|
| 1235 |
+
def translate_text(text, target_lang='en'):
|
| 1236 |
+
translator = GoogleTranslator(source='auto', target=target_lang)
|
| 1237 |
+
return translator.translate(text)
|
| 1238 |
+
|
| 1239 |
+
# Use the async function in your Streamlit app
|
| 1240 |
+
if st.button("Get Analysis", key=f"analyze_{file_id}"):
|
| 1241 |
+
with st.spinner(f"Generating analysis using {selected_model}..."):
|
| 1242 |
+
# Perform translation
|
| 1243 |
+
translated_input = translate_text(user_text, target_lang='en')
|
| 1244 |
+
st.write(f"Translated Input (to English): {translated_input}")
|
| 1245 |
+
|
| 1246 |
+
# Create detailed image information dictionary
|
| 1247 |
+
image_details = {
|
| 1248 |
+
"confidence_scores": confidences,
|
| 1249 |
+
"bounding_boxes": boxes,
|
| 1250 |
+
"image_dimensions": image.shape,
|
| 1251 |
+
"image_data": image # Add the image data for vision models
|
| 1252 |
+
}
|
| 1253 |
+
|
| 1254 |
+
# Generate response
|
| 1255 |
+
response = generate_improved_description(
|
| 1256 |
+
classes_in_image,
|
| 1257 |
+
classes_in_dataset,
|
| 1258 |
+
translated_input,
|
| 1259 |
+
image_details,
|
| 1260 |
+
st.session_state.conversation_history[file_id]
|
| 1261 |
+
)
|
| 1262 |
+
|
| 1263 |
+
# Translate LLM response
|
| 1264 |
+
translated_response = translate_text(response, target_lang=language)
|
| 1265 |
+
|
| 1266 |
+
# Add to conversation history and display the response
|
| 1267 |
+
st.session_state.conversation_history[file_id].append((user_text, translated_response, None))
|
| 1268 |
+
st.markdown("### Latest Response")
|
| 1269 |
+
st.markdown(translated_response)
|
| 1270 |
+
|
| 1271 |
+
# Add audio playback option for the latest response
|
| 1272 |
+
if tts_enabled:
|
| 1273 |
+
col1, col2 = st.columns([1, 4])
|
| 1274 |
+
with col1:
|
| 1275 |
+
if st.button("🔊 Listen", key=f"listen_latest_{file_id}"):
|
| 1276 |
+
with st.spinner("Generating audio..."):
|
| 1277 |
+
audio_bytes = text_to_speech(translated_response, language)
|
| 1278 |
+
if audio_bytes:
|
| 1279 |
+
st.audio(audio_bytes, format='audio/mp3')
|
| 1280 |
+
|
| 1281 |
+
# Export conversation
|
| 1282 |
+
if st.button("Export Conversation", key=f"export_{file_id}"):
|
| 1283 |
+
conversation_text = f"""
|
| 1284 |
+
# Crop Disease Analysis Report
|
| 1285 |
+
|
| 1286 |
+
## Image Information
|
| 1287 |
+
- Filename: {file_id}
|
| 1288 |
+
- Analysis Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
| 1289 |
+
|
| 1290 |
+
## Detected Diseases
|
| 1291 |
+
{', '.join([classes_in_dataset[cls] for cls in classes_in_image])}
|
| 1292 |
+
|
| 1293 |
+
## Conversation History
|
| 1294 |
+
"""
|
| 1295 |
+
|
| 1296 |
+
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
|
| 1297 |
+
if len(entry) == 2: # Handle legacy entries
|
| 1298 |
+
question, response = entry
|
| 1299 |
+
feedback = "No feedback"
|
| 1300 |
+
else:
|
| 1301 |
+
question, response, feedback = entry
|
| 1302 |
+
|
| 1303 |
+
conversation_text += f"\n### Question {i+1}:\n{question}\n\n### Answer {i+1}:\n{response}\n\n### Feedback {i+1}:\n{feedback}\n"
|
| 1304 |
+
|
| 1305 |
+
st.download_button(
|
| 1306 |
+
label="Download Conversation",
|
| 1307 |
+
data=conversation_text,
|
| 1308 |
+
file_name=f"disease_analysis_{file_id}.md",
|
| 1309 |
+
mime="text/markdown"
|
| 1310 |
+
)
|
| 1311 |
+
|
| 1312 |
+
# Add a footer with clear instructions
|
| 1313 |
+
st.markdown("""
|
| 1314 |
+
---
|
| 1315 |
+
### How to Use
|
| 1316 |
+
1. Upload one or more images of crops with potential diseases
|
| 1317 |
+
2. View the detected diseases and their confidence scores
|
| 1318 |
+
3. Ask questions about the diseases, treatments, or prevention
|
| 1319 |
+
4. Use the 🔊 Listen button to hear the responses
|
| 1320 |
+
5. View previous questions and answers in the conversation history
|
| 1321 |
+
6. Export the entire conversation for future reference
|
| 1322 |
+
7. Use the sidebar to adjust settings or clear conversation history
|
| 1323 |
+
""")
|
startup.sh
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Start Ollama in the background
|
| 4 |
+
ollama serve &
|
| 5 |
+
|
| 6 |
+
# Wait for Ollama to initialize
|
| 7 |
+
echo "Waiting for Ollama to start..."
|
| 8 |
+
sleep 5
|
| 9 |
+
|
| 10 |
+
# Pull required models
|
| 11 |
+
echo "Pulling Ollama models..."
|
| 12 |
+
ollama pull llama2
|
| 13 |
+
#ollama pull llama3.1
|
| 14 |
+
#ollama pull llama3.2
|
| 15 |
+
#ollama pull mistral
|
| 16 |
+
ollama list
|
| 17 |
+
|
| 18 |
+
curl -X POST http://localhost:11434/api/generate \
|
| 19 |
+
-H "Content-Type: application/json" \
|
| 20 |
+
-d '{
|
| 21 |
+
"model": "llama2",
|
| 22 |
+
"prompt": "Hello, world!"
|
| 23 |
+
}'
|
| 24 |
+
|
| 25 |
+
# Start supervisord to manage processes
|
| 26 |
+
echo "Starting supervisord..."
|
| 27 |
+
exec /usr/bin/supervisord -c /etc/supervisor/conf.d/supervisord.conf
|
supervisord.conf
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[supervisord]
|
| 2 |
+
nodaemon=true
|
| 3 |
+
|
| 4 |
+
[program:ollama]
|
| 5 |
+
command=ollama serve
|
| 6 |
+
autostart=true
|
| 7 |
+
autorestart=true
|
| 8 |
+
stderr_logfile=/dev/stderr
|
| 9 |
+
stdout_logfile=/dev/stdout
|
| 10 |
+
|
| 11 |
+
[program:streamlit]
|
| 12 |
+
command=streamlit run app.py --server.port=8501 --server.address=0.0.0.0
|
| 13 |
+
autostart=true
|
| 14 |
+
autorestart=true
|
| 15 |
+
stderr_logfile=/dev/stderr
|
| 16 |
+
stdout_logfile=/dev/stdout
|