Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
from langchain.prompts import PromptTemplate
|
5 |
-
from langchain.
|
6 |
from langchain.memory import ConversationBufferMemory
|
|
|
7 |
|
8 |
# Set OpenAI API Key
|
9 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
@@ -23,21 +68,21 @@ prompt = PromptTemplate(
|
|
23 |
# Initialize conversation memory
|
24 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
25 |
|
26 |
-
# Define the LLM
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
memory=memory,
|
32 |
-
)
|
33 |
|
34 |
# Function to get chatbot response
|
35 |
def get_text_response(user_message, history):
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
# Create a Gradio chat interface
|
40 |
demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
|
41 |
|
42 |
if __name__ == "__main__":
|
43 |
demo.launch()
|
|
|
|
1 |
+
# import os
|
2 |
+
# import gradio as gr
|
3 |
+
# from langchain.chat_models import ChatOpenAI
|
4 |
+
# from langchain.prompts import PromptTemplate
|
5 |
+
# from langchain.chains import LLMChain
|
6 |
+
# from langchain.memory import ConversationBufferMemory
|
7 |
+
|
8 |
+
# # Set OpenAI API Key
|
9 |
+
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
10 |
+
|
11 |
+
# # Define the template for the chatbot's response
|
12 |
+
# template = """You are a helpful assistant to answer all user queries.
|
13 |
+
# {chat_history}
|
14 |
+
# User: {user_message}
|
15 |
+
# Chatbot:"""
|
16 |
+
|
17 |
+
# # Define the prompt template
|
18 |
+
# prompt = PromptTemplate(
|
19 |
+
# input_variables=["chat_history", "user_message"],
|
20 |
+
# template=template
|
21 |
+
# )
|
22 |
+
|
23 |
+
# # Initialize conversation memory
|
24 |
+
# memory = ConversationBufferMemory(memory_key="chat_history")
|
25 |
+
|
26 |
+
# # Define the LLM chain with the ChatOpenAI model and conversation memory
|
27 |
+
# llm_chain = LLMChain(
|
28 |
+
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
|
29 |
+
# prompt=prompt,
|
30 |
+
# verbose=True,
|
31 |
+
# memory=memory,
|
32 |
+
# )
|
33 |
+
|
34 |
+
# # Function to get chatbot response
|
35 |
+
# def get_text_response(user_message, history):
|
36 |
+
# response = llm_chain.predict(user_message=user_message)
|
37 |
+
# return response
|
38 |
+
|
39 |
+
# # Create a Gradio chat interface
|
40 |
+
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
|
41 |
+
|
42 |
+
# if __name__ == "__main__":
|
43 |
+
# demo.launch()
|
44 |
+
|
45 |
import os
|
46 |
import gradio as gr
|
47 |
+
from langchain_openai import ChatOpenAI
|
48 |
from langchain.prompts import PromptTemplate
|
49 |
+
from langchain.schema import BaseMemory
|
50 |
from langchain.memory import ConversationBufferMemory
|
51 |
+
from langchain.chains import RunnableSequence
|
52 |
|
53 |
# Set OpenAI API Key
|
54 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
|
68 |
# Initialize conversation memory
|
69 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
70 |
|
71 |
+
# Define the LLM (language model)
|
72 |
+
llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
|
73 |
+
|
74 |
+
# Define the chain using RunnableSequence (replace LLMChain)
|
75 |
+
llm_chain = prompt | llm # Chaining the prompt and the LLM
|
|
|
|
|
76 |
|
77 |
# Function to get chatbot response
|
78 |
def get_text_response(user_message, history):
|
79 |
+
inputs = {"chat_history": history, "user_message": user_message}
|
80 |
+
response = llm_chain(inputs)
|
81 |
+
return response['text']
|
82 |
|
83 |
# Create a Gradio chat interface
|
84 |
demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
demo.launch()
|
88 |
+
|