Bhaskar2611 commited on
Commit
0318caf
·
verified ·
1 Parent(s): 1778245

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -11
app.py CHANGED
@@ -1,9 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import gradio as gr
3
- from langchain.chat_models import ChatOpenAI
4
  from langchain.prompts import PromptTemplate
5
- from langchain.chains import LLMChain
6
  from langchain.memory import ConversationBufferMemory
 
7
 
8
  # Set OpenAI API Key
9
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
@@ -23,21 +68,21 @@ prompt = PromptTemplate(
23
  # Initialize conversation memory
24
  memory = ConversationBufferMemory(memory_key="chat_history")
25
 
26
- # Define the LLM chain with the ChatOpenAI model and conversation memory
27
- llm_chain = LLMChain(
28
- llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
29
- prompt=prompt,
30
- verbose=True,
31
- memory=memory,
32
- )
33
 
34
  # Function to get chatbot response
35
  def get_text_response(user_message, history):
36
- response = llm_chain.predict(user_message=user_message)
37
- return response
 
38
 
39
  # Create a Gradio chat interface
40
  demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
41
 
42
  if __name__ == "__main__":
43
  demo.launch()
 
 
1
+ # import os
2
+ # import gradio as gr
3
+ # from langchain.chat_models import ChatOpenAI
4
+ # from langchain.prompts import PromptTemplate
5
+ # from langchain.chains import LLMChain
6
+ # from langchain.memory import ConversationBufferMemory
7
+
8
+ # # Set OpenAI API Key
9
+ # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
10
+
11
+ # # Define the template for the chatbot's response
12
+ # template = """You are a helpful assistant to answer all user queries.
13
+ # {chat_history}
14
+ # User: {user_message}
15
+ # Chatbot:"""
16
+
17
+ # # Define the prompt template
18
+ # prompt = PromptTemplate(
19
+ # input_variables=["chat_history", "user_message"],
20
+ # template=template
21
+ # )
22
+
23
+ # # Initialize conversation memory
24
+ # memory = ConversationBufferMemory(memory_key="chat_history")
25
+
26
+ # # Define the LLM chain with the ChatOpenAI model and conversation memory
27
+ # llm_chain = LLMChain(
28
+ # llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
29
+ # prompt=prompt,
30
+ # verbose=True,
31
+ # memory=memory,
32
+ # )
33
+
34
+ # # Function to get chatbot response
35
+ # def get_text_response(user_message, history):
36
+ # response = llm_chain.predict(user_message=user_message)
37
+ # return response
38
+
39
+ # # Create a Gradio chat interface
40
+ # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
41
+
42
+ # if __name__ == "__main__":
43
+ # demo.launch()
44
+
45
  import os
46
  import gradio as gr
47
+ from langchain_openai import ChatOpenAI
48
  from langchain.prompts import PromptTemplate
49
+ from langchain.schema import BaseMemory
50
  from langchain.memory import ConversationBufferMemory
51
+ from langchain.chains import RunnableSequence
52
 
53
  # Set OpenAI API Key
54
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
 
68
  # Initialize conversation memory
69
  memory = ConversationBufferMemory(memory_key="chat_history")
70
 
71
+ # Define the LLM (language model)
72
+ llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
73
+
74
+ # Define the chain using RunnableSequence (replace LLMChain)
75
+ llm_chain = prompt | llm # Chaining the prompt and the LLM
 
 
76
 
77
  # Function to get chatbot response
78
  def get_text_response(user_message, history):
79
+ inputs = {"chat_history": history, "user_message": user_message}
80
+ response = llm_chain(inputs)
81
+ return response['text']
82
 
83
  # Create a Gradio chat interface
84
  demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
85
 
86
  if __name__ == "__main__":
87
  demo.launch()
88
+