Bhaskar2611 commited on
Commit
04e8e2c
·
verified ·
1 Parent(s): cac8f0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -461
app.py CHANGED
@@ -42,467 +42,6 @@
42
  # if __name__ == "__main__":
43
  # demo.launch()
44
 
45
- # import subprocess
46
-
47
- # # Run the Bash script that installs dependencies and runs the app
48
- # subprocess.run(['./run.sh'])
49
-
50
- # # Rest of your application code can go here
51
- # import subprocess
52
- # import os
53
-
54
- # # Ensure the run.sh script has executable permissions
55
- # # subprocess.run(['chmod', '+x', './run.sh'])
56
-
57
- # # Run the Bash script that installs dependencies and runs the app
58
- # # subprocess.run(['./run.sh'])
59
-
60
- # import gradio as gr
61
- # from langchain_openai import ChatOpenAI
62
- # from langchain.prompts import PromptTemplate
63
- # from langchain.memory import ConversationBufferMemory
64
- # from langchain.chains import RunnableSequence
65
-
66
- # # Set OpenAI API Key
67
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
68
-
69
- # # Define the template for the chatbot's response
70
- # template = """You are a helpful assistant to answer all user queries.
71
- # {chat_history}
72
- # User: {user_message}
73
- # Chatbot:"""
74
-
75
- # # Define the prompt template
76
- # prompt = PromptTemplate(
77
- # input_variables=["chat_history", "user_message"],
78
- # template=template
79
- # )
80
-
81
- # # Initialize conversation memory
82
- # memory = ConversationBufferMemory(memory_key="chat_history")
83
-
84
- # # Define the LLM (language model)
85
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
86
-
87
- # # Define the chain using RunnableSequence (replace LLMChain)
88
- # llm_chain = prompt | llm # Chaining the prompt and the LLM
89
-
90
- # # Function to get chatbot response
91
- # def get_text_response(user_message, history):
92
- # inputs = {"chat_history": history, "user_message": user_message}
93
- # response = llm_chain(inputs)
94
- # return response['text']
95
-
96
- # # Create a Gradio chat interface
97
- # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
98
-
99
- # if __name__ == "__main__":
100
- # demo.launch()
101
-
102
-
103
- # import os
104
- # import gradio as gr
105
- # from langchain_openai import ChatOpenAI
106
- # from langchain.prompts import PromptTemplate
107
- # from langchain.memory import ConversationBufferMemory
108
- # from langchain.chains import LLMChain
109
-
110
- # # Set OpenAI API Key
111
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
112
-
113
- # # Define the template for the chatbot's response
114
- # template = """You are a helpful assistant to answer all user queries.
115
- # {chat_history}
116
- # User: {user_message}
117
- # Chatbot:"""
118
-
119
- # # Define the prompt template
120
- # prompt = PromptTemplate(
121
- # input_variables=["chat_history", "user_message"],
122
- # template=template
123
- # )
124
-
125
- # # Initialize conversation memory
126
- # memory = ConversationBufferMemory(memory_key="chat_history")
127
-
128
- # # Define the LLM (language model) and chain
129
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
130
- # llm_chain = LLMChain(
131
- # llm=llm,
132
- # prompt=prompt,
133
- # verbose=True,
134
- # memory=memory,
135
- # )
136
-
137
- # # Function to get chatbot response
138
- # def get_text_response(user_message, history):
139
- # response = llm_chain.predict(user_message=user_message)
140
- # return response
141
-
142
- # # Create a Gradio chat interface
143
- # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
144
-
145
- # if __name__ == "__main__":
146
- # demo.launch()
147
-
148
- # import os
149
- # import gradio as gr
150
- # from langchain_openai import ChatOpenAI
151
- # from langchain.prompts import PromptTemplate
152
- # from langchain.memory import ConversationBufferMemory
153
- # from langchain.schema import AIMessage, HumanMessage
154
- # from langchain.chains import RunnableSequence
155
-
156
- # # Set OpenAI API Key
157
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
158
-
159
- # # Define the template for the chatbot's response
160
- # template = """You are a helpful assistant to answer all user queries.
161
- # {chat_history}
162
- # User: {user_message}
163
- # Chatbot:"""
164
-
165
- # # Define the prompt template
166
- # prompt = PromptTemplate(
167
- # input_variables=["chat_history", "user_message"],
168
- # template=template
169
- # )
170
-
171
- # # Initialize conversation memory (following migration guide)
172
- # memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
173
-
174
- # # Define the LLM (language model)
175
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
176
-
177
- # # Create the RunnableSequence instead of LLMChain
178
- # llm_sequence = prompt | llm # This pipelines the prompt into the language model
179
-
180
- # # Function to get chatbot response
181
- # def get_text_response(user_message, history):
182
- # # Prepare the conversation history
183
- # chat_history = [HumanMessage(content=user_message)]
184
-
185
- # # Pass the prompt and history to the language model sequence
186
- # response = llm_sequence.invoke({"chat_history": history, "user_message": user_message})
187
-
188
- # return response
189
-
190
- # # Create a Gradio chat interface
191
- # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
192
-
193
- # if __name__ == "__main__":
194
- # demo.launch()
195
-
196
- # import os
197
- # import gradio as gr
198
- # from langchain_openai import ChatOpenAI
199
- # from langchain.prompts import PromptTemplate
200
- # from langchain.memory import ConversationBufferMemory
201
- # from langchain.schema import AIMessage, HumanMessage
202
- # from langchain import Runnable # Using Runnable instead of RunnableSequence
203
-
204
- # # Set OpenAI API Key
205
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
206
-
207
- # # Define the template for the chatbot's response
208
- # template = """You are a helpful assistant to answer all user queries.
209
- # {chat_history}
210
- # User: {user_message}
211
- # Chatbot:"""
212
-
213
- # # Define the prompt template
214
- # prompt = PromptTemplate(
215
- # input_variables=["chat_history", "user_message"],
216
- # template=template
217
- # )
218
-
219
- # # Initialize conversation memory (following migration guide)
220
- # memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
221
-
222
- # # Define the LLM (language model)
223
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
224
-
225
- # # Create the Runnable instead of RunnableSequence
226
- # llm_runnable = Runnable(lambda inputs: prompt.format(**inputs)) | llm
227
-
228
- # # Function to get chatbot response
229
- # def get_text_response(user_message, history):
230
- # # Prepare the conversation history
231
- # chat_history = [HumanMessage(content=user_message)]
232
-
233
- # # Pass the prompt and history to the language model sequence
234
- # response = llm_runnable.invoke({"chat_history": history, "user_message": user_message})
235
-
236
- # return response
237
-
238
- # # Create a Gradio chat interface
239
- # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
240
-
241
- # if __name__ == "__main__":
242
- # demo.launch()
243
-
244
- # import os
245
- # import subprocess
246
- # import gradio as gr
247
-
248
- # # Install necessary packages
249
- # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
250
-
251
- # from langchain_openai import ChatOpenAI
252
- # from langchain.prompts import PromptTemplate
253
- # from langchain.chains import LLMChain
254
- # from langchain.memory import ConversationBufferMemory
255
-
256
- # # Set OpenAI API Key
257
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
258
-
259
- # # Define the template for the chatbot's response
260
- # template = """You are a helpful assistant to answer all user queries.
261
- # {chat_history}
262
- # User: {user_message}
263
- # Chatbot:"""
264
-
265
- # # Define the prompt template
266
- # prompt = PromptTemplate(
267
- # input_variables=["chat_history", "user_message"],
268
- # template=template
269
- # )
270
-
271
- # # Initialize conversation memory
272
- # memory = ConversationBufferMemory(memory_key="chat_history")
273
-
274
- # # Define the LLM chain with the ChatOpenAI model and conversation memory
275
- # llm_chain = LLMChain(
276
- # llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
277
- # prompt=prompt,
278
- # verbose=True,
279
- # memory=memory,
280
- # )
281
-
282
- # # Function to get chatbot response
283
- # def get_text_response(user_message, history):
284
- # # Prepare the conversation history
285
- # chat_history = history + [f"User: {user_message}"]
286
- # response = llm_chain.predict(user_message=user_message, chat_history=chat_history)
287
- # return response
288
-
289
- # # Create a Gradio chat interface
290
- # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
291
-
292
- # if __name__ == "__main__":
293
- # demo.launch()
294
-
295
- # import os
296
- # import subprocess
297
- # import gradio as gr
298
-
299
- # # Install necessary packages
300
- # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
301
-
302
- # from langchain_openai import ChatOpenAI
303
- # from langchain.prompts import PromptTemplate
304
- # from langchain.memory import ConversationBufferMemory
305
- # from langchain.chains import Runnable, RunnableSequence
306
-
307
- # # Set OpenAI API Key
308
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
309
-
310
- # # Define the template for the chatbot's response
311
- # template = """You are a helpful assistant to answer all user queries.
312
- # {chat_history}
313
- # User: {user_message}
314
- # Chatbot:"""
315
-
316
- # # Define the prompt template
317
- # prompt = PromptTemplate(
318
- # input_variables=["chat_history", "user_message"],
319
- # template=template
320
- # )
321
-
322
- # # Initialize conversation memory
323
- # memory = ConversationBufferMemory(memory_key="chat_history")
324
-
325
- # # Define the runnable sequence
326
- # chatbot_runnable = RunnableSequence(prompt | ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"))
327
-
328
- # # Function to get chatbot response
329
- # def get_text_response(user_message, history=None):
330
- # # Ensure history is a list
331
- # if history is None:
332
- # history = []
333
-
334
- # # Prepare the conversation history
335
- # chat_history = history + [f"User: {user_message}"]
336
- # response = chatbot_runnable.invoke({"chat_history": "\n".join(chat_history), "user_message": user_message})
337
-
338
- # return response
339
-
340
- # # Create a Gradio chat interface
341
- # demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
342
-
343
- # if __name__ == "__main__":
344
- # demo.launch()
345
-
346
- # import os
347
- # import subprocess
348
- # import gradio as gr
349
-
350
- # # Install necessary packages
351
- # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
352
-
353
- # from langchain_openai import ChatOpenAI
354
- # from langchain.prompts import PromptTemplate
355
- # from langchain.memory import ConversationBufferMemory
356
-
357
- # # Set OpenAI API Key
358
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
359
-
360
- # # Define the template for the chatbot's response
361
- # template = """You are a helpful assistant to answer all user queries.
362
- # {chat_history}
363
- # User: {user_message}
364
- # Chatbot:"""
365
-
366
- # # Define the prompt template
367
- # prompt = PromptTemplate(
368
- # input_variables=["chat_history", "user_message"],
369
- # template=template
370
- # )
371
-
372
- # # Initialize conversation memory
373
- # memory = ConversationBufferMemory(memory_key="chat_history")
374
-
375
- # # Function to get chatbot response
376
- # def get_text_response(user_message, history=None):
377
- # # Ensure history is a list
378
- # if history is None:
379
- # history = []
380
-
381
- # # Prepare the conversation history
382
- # chat_history = history + [f"User: {user_message}"]
383
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
384
- # response = llm({"chat_history": "\n".join(chat_history), "user_message": user_message})
385
-
386
- # return response['choices'][0]['message']['content']
387
-
388
- # # Create a Gradio chat interface
389
- # demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
390
-
391
- # if __name__ == "__main__":
392
- # demo.launch()
393
-
394
- # import os
395
- # import subprocess
396
- # import gradio as gr
397
-
398
- # # Install necessary packages
399
- # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
400
-
401
- # from langchain_openai import ChatOpenAI
402
- # from langchain.prompts import PromptTemplate
403
- # from langchain.memory import ConversationBufferMemory
404
-
405
- # # Set OpenAI API Key
406
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
407
-
408
- # # Define the template for the chatbot's response
409
- # template = """You are a helpful assistant to answer all user queries.
410
- # {chat_history}
411
- # User: {user_message}
412
- # Chatbot:"""
413
-
414
- # # Define the prompt template
415
- # prompt = PromptTemplate(
416
- # input_variables=["chat_history", "user_message"],
417
- # template=template
418
- # )
419
-
420
- # # Initialize conversation memory
421
- # memory = ConversationBufferMemory(memory_key="chat_history")
422
-
423
- # # Function to get chatbot response
424
- # def get_text_response(user_message, history=None):
425
- # # Ensure history is a list
426
- # if history is None:
427
- # history = []
428
-
429
- # # Prepare the conversation history
430
- # chat_history = history + [f"User: {user_message}"]
431
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
432
- # response = llm({"chat_history": "\n".join(chat_history), "user_message": user_message})
433
-
434
- # # Return the response and updated history
435
- # return response['choices'][0]['message']['content'], chat_history
436
-
437
- # # Create a Gradio chat interface
438
- # demo = gr.Interface(
439
- # fn=get_text_response,
440
- # inputs=["text", "state"],
441
- # outputs=["text", "state"],
442
- # )
443
-
444
- # if __name__ == "__main__":
445
- # demo.launch()
446
-
447
- # import os
448
- # import subprocess
449
- # import gradio as gr
450
-
451
- # # Install necessary packages
452
- # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
453
-
454
- # from langchain_openai import ChatOpenAI
455
- # from langchain.prompts import PromptTemplate
456
- # from langchain.memory import ConversationBufferMemory
457
-
458
- # # Set OpenAI API Key
459
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
460
-
461
- # # Define the template for the chatbot's response
462
- # template = """You are a helpful assistant to answer all user queries.
463
- # {chat_history}
464
- # User: {user_message}
465
- # Chatbot:"""
466
-
467
- # # Define the prompt template
468
- # prompt = PromptTemplate(
469
- # input_variables=["chat_history", "user_message"],
470
- # template=template
471
- # )
472
-
473
- # # Initialize conversation memory
474
- # memory = ConversationBufferMemory(memory_key="chat_history")
475
-
476
- # # Function to get chatbot response
477
- # def get_text_response(user_message, history=None):
478
- # # Ensure history is a list
479
- # if history is None:
480
- # history = []
481
-
482
- # # Prepare the conversation history
483
- # chat_history = history + [f"User: {user_message}"]
484
-
485
- # # Create the full prompt string
486
- # full_prompt = prompt.format(chat_history="\n".join(chat_history), user_message=user_message)
487
-
488
- # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
489
-
490
- # # Use the invoke method instead of __call__
491
- # response = llm.invoke(full_prompt)
492
-
493
- # # Return the response and updated history
494
- # return response['choices'][0]['message']['content'], chat_history
495
-
496
- # # Create a Gradio chat interface
497
- # demo = gr.Interface(
498
- # fn=get_text_response,
499
- # inputs=["text", "state"],
500
- # outputs=["text", "state"],
501
- # )
502
-
503
- # if __name__ == "__main__":
504
- # demo.launch()
505
-
506
  import os
507
  import gradio as gr
508
  from langchain.chat_models import ChatOpenAI
 
42
  # if __name__ == "__main__":
43
  # demo.launch()
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  import os
46
  import gradio as gr
47
  from langchain.chat_models import ChatOpenAI