Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -292,6 +292,57 @@
|
|
292 |
# if __name__ == "__main__":
|
293 |
# demo.launch()
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
import os
|
296 |
import subprocess
|
297 |
import gradio as gr
|
@@ -302,7 +353,6 @@ subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "la
|
|
302 |
from langchain_openai import ChatOpenAI
|
303 |
from langchain.prompts import PromptTemplate
|
304 |
from langchain.memory import ConversationBufferMemory
|
305 |
-
from langchain.chains import Runnable, RunnableSequence
|
306 |
|
307 |
# Set OpenAI API Key
|
308 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
@@ -322,9 +372,6 @@ prompt = PromptTemplate(
|
|
322 |
# Initialize conversation memory
|
323 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
324 |
|
325 |
-
# Define the runnable sequence
|
326 |
-
chatbot_runnable = RunnableSequence(prompt | ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"))
|
327 |
-
|
328 |
# Function to get chatbot response
|
329 |
def get_text_response(user_message, history=None):
|
330 |
# Ensure history is a list
|
@@ -333,9 +380,10 @@ def get_text_response(user_message, history=None):
|
|
333 |
|
334 |
# Prepare the conversation history
|
335 |
chat_history = history + [f"User: {user_message}"]
|
336 |
-
|
|
|
337 |
|
338 |
-
return response
|
339 |
|
340 |
# Create a Gradio chat interface
|
341 |
demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
|
@@ -348,3 +396,4 @@ if __name__ == "__main__":
|
|
348 |
|
349 |
|
350 |
|
|
|
|
292 |
# if __name__ == "__main__":
|
293 |
# demo.launch()
|
294 |
|
295 |
+
# import os
|
296 |
+
# import subprocess
|
297 |
+
# import gradio as gr
|
298 |
+
|
299 |
+
# # Install necessary packages
|
300 |
+
# subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
|
301 |
+
|
302 |
+
# from langchain_openai import ChatOpenAI
|
303 |
+
# from langchain.prompts import PromptTemplate
|
304 |
+
# from langchain.memory import ConversationBufferMemory
|
305 |
+
# from langchain.chains import Runnable, RunnableSequence
|
306 |
+
|
307 |
+
# # Set OpenAI API Key
|
308 |
+
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
309 |
+
|
310 |
+
# # Define the template for the chatbot's response
|
311 |
+
# template = """You are a helpful assistant to answer all user queries.
|
312 |
+
# {chat_history}
|
313 |
+
# User: {user_message}
|
314 |
+
# Chatbot:"""
|
315 |
+
|
316 |
+
# # Define the prompt template
|
317 |
+
# prompt = PromptTemplate(
|
318 |
+
# input_variables=["chat_history", "user_message"],
|
319 |
+
# template=template
|
320 |
+
# )
|
321 |
+
|
322 |
+
# # Initialize conversation memory
|
323 |
+
# memory = ConversationBufferMemory(memory_key="chat_history")
|
324 |
+
|
325 |
+
# # Define the runnable sequence
|
326 |
+
# chatbot_runnable = RunnableSequence(prompt | ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"))
|
327 |
+
|
328 |
+
# # Function to get chatbot response
|
329 |
+
# def get_text_response(user_message, history=None):
|
330 |
+
# # Ensure history is a list
|
331 |
+
# if history is None:
|
332 |
+
# history = []
|
333 |
+
|
334 |
+
# # Prepare the conversation history
|
335 |
+
# chat_history = history + [f"User: {user_message}"]
|
336 |
+
# response = chatbot_runnable.invoke({"chat_history": "\n".join(chat_history), "user_message": user_message})
|
337 |
+
|
338 |
+
# return response
|
339 |
+
|
340 |
+
# # Create a Gradio chat interface
|
341 |
+
# demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
|
342 |
+
|
343 |
+
# if __name__ == "__main__":
|
344 |
+
# demo.launch()
|
345 |
+
|
346 |
import os
|
347 |
import subprocess
|
348 |
import gradio as gr
|
|
|
353 |
from langchain_openai import ChatOpenAI
|
354 |
from langchain.prompts import PromptTemplate
|
355 |
from langchain.memory import ConversationBufferMemory
|
|
|
356 |
|
357 |
# Set OpenAI API Key
|
358 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
|
372 |
# Initialize conversation memory
|
373 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
374 |
|
|
|
|
|
|
|
375 |
# Function to get chatbot response
|
376 |
def get_text_response(user_message, history=None):
|
377 |
# Ensure history is a list
|
|
|
380 |
|
381 |
# Prepare the conversation history
|
382 |
chat_history = history + [f"User: {user_message}"]
|
383 |
+
llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
|
384 |
+
response = llm({"chat_history": "\n".join(chat_history), "user_message": user_message})
|
385 |
|
386 |
+
return response['choices'][0]['message']['content']
|
387 |
|
388 |
# Create a Gradio chat interface
|
389 |
demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
|
|
|
396 |
|
397 |
|
398 |
|
399 |
+
|