Bhaskar2611 commited on
Commit
25606a9
·
verified ·
1 Parent(s): d141979

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -6
app.py CHANGED
@@ -292,6 +292,57 @@
292
  # if __name__ == "__main__":
293
  # demo.launch()
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
  import os
296
  import subprocess
297
  import gradio as gr
@@ -302,7 +353,6 @@ subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "la
302
  from langchain_openai import ChatOpenAI
303
  from langchain.prompts import PromptTemplate
304
  from langchain.memory import ConversationBufferMemory
305
- from langchain.chains import Runnable, RunnableSequence
306
 
307
  # Set OpenAI API Key
308
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
@@ -322,9 +372,6 @@ prompt = PromptTemplate(
322
  # Initialize conversation memory
323
  memory = ConversationBufferMemory(memory_key="chat_history")
324
 
325
- # Define the runnable sequence
326
- chatbot_runnable = RunnableSequence(prompt | ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"))
327
-
328
  # Function to get chatbot response
329
  def get_text_response(user_message, history=None):
330
  # Ensure history is a list
@@ -333,9 +380,10 @@ def get_text_response(user_message, history=None):
333
 
334
  # Prepare the conversation history
335
  chat_history = history + [f"User: {user_message}"]
336
- response = chatbot_runnable.invoke({"chat_history": "\n".join(chat_history), "user_message": user_message})
 
337
 
338
- return response
339
 
340
  # Create a Gradio chat interface
341
  demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
@@ -348,3 +396,4 @@ if __name__ == "__main__":
348
 
349
 
350
 
 
 
292
  # if __name__ == "__main__":
293
  # demo.launch()
294
 
295
+ # import os
296
+ # import subprocess
297
+ # import gradio as gr
298
+
299
+ # # Install necessary packages
300
+ # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
301
+
302
+ # from langchain_openai import ChatOpenAI
303
+ # from langchain.prompts import PromptTemplate
304
+ # from langchain.memory import ConversationBufferMemory
305
+ # from langchain.chains import Runnable, RunnableSequence
306
+
307
+ # # Set OpenAI API Key
308
+ # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
309
+
310
+ # # Define the template for the chatbot's response
311
+ # template = """You are a helpful assistant to answer all user queries.
312
+ # {chat_history}
313
+ # User: {user_message}
314
+ # Chatbot:"""
315
+
316
+ # # Define the prompt template
317
+ # prompt = PromptTemplate(
318
+ # input_variables=["chat_history", "user_message"],
319
+ # template=template
320
+ # )
321
+
322
+ # # Initialize conversation memory
323
+ # memory = ConversationBufferMemory(memory_key="chat_history")
324
+
325
+ # # Define the runnable sequence
326
+ # chatbot_runnable = RunnableSequence(prompt | ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"))
327
+
328
+ # # Function to get chatbot response
329
+ # def get_text_response(user_message, history=None):
330
+ # # Ensure history is a list
331
+ # if history is None:
332
+ # history = []
333
+
334
+ # # Prepare the conversation history
335
+ # chat_history = history + [f"User: {user_message}"]
336
+ # response = chatbot_runnable.invoke({"chat_history": "\n".join(chat_history), "user_message": user_message})
337
+
338
+ # return response
339
+
340
+ # # Create a Gradio chat interface
341
+ # demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
342
+
343
+ # if __name__ == "__main__":
344
+ # demo.launch()
345
+
346
  import os
347
  import subprocess
348
  import gradio as gr
 
353
  from langchain_openai import ChatOpenAI
354
  from langchain.prompts import PromptTemplate
355
  from langchain.memory import ConversationBufferMemory
 
356
 
357
  # Set OpenAI API Key
358
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
 
372
  # Initialize conversation memory
373
  memory = ConversationBufferMemory(memory_key="chat_history")
374
 
 
 
 
375
  # Function to get chatbot response
376
  def get_text_response(user_message, history=None):
377
  # Ensure history is a list
 
380
 
381
  # Prepare the conversation history
382
  chat_history = history + [f"User: {user_message}"]
383
+ llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
384
+ response = llm({"chat_history": "\n".join(chat_history), "user_message": user_message})
385
 
386
+ return response['choices'][0]['message']['content']
387
 
388
  # Create a Gradio chat interface
389
  demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text")
 
396
 
397
 
398
 
399
+