Bhaskar2611 commited on
Commit
378a7ec
·
verified ·
1 Parent(s): cdd5c29

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -60
app.py CHANGED
@@ -42,80 +42,47 @@
42
  # if __name__ == "__main__":
43
  # demo.launch()
44
 
45
- # import os
46
- # import gradio as gr
47
- # from langchain.chat_models import ChatOpenAI
48
- # from langchain.schema import AIMessage, HumanMessage
49
-
50
- # # Set OpenAI API Key
51
- # os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key
52
-
53
- # # Initialize the ChatOpenAI model
54
- # llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")
55
-
56
- # # Function to predict response
57
- # def get_text_response(message, history=None):
58
- # # Ensure history is a list
59
- # if history is None:
60
- # history = []
61
-
62
- # # Convert the Gradio history format to LangChain message format
63
- # history_langchain_format = []
64
- # for human, ai in history:
65
- # history_langchain_format.append(HumanMessage(content=human))
66
- # history_langchain_format.append(AIMessage(content=ai))
67
-
68
- # # Add the new user message to the history
69
- # history_langchain_format.append(HumanMessage(content=message))
70
-
71
- # # Get the model's response
72
- # gpt_response = llm(history_langchain_format)
73
-
74
- # # Append AI response to history
75
- # history.append((message, gpt_response.content))
76
-
77
- # # Return the response and updated history
78
- # return gpt_response.content, history
79
-
80
- # # Create a Gradio chat interface
81
- # demo = gr.Interface(
82
- # fn=get_text_response,
83
- # inputs=["text", "state"],
84
- # outputs=["text", "state"]
85
- # )
86
-
87
- # if __name__ == "__main__":
88
- # demo.launch()
89
-
90
- import time
91
  import gradio as gr
92
  from langchain.chat_models import ChatOpenAI
93
  from langchain.schema import AIMessage, HumanMessage
94
- import openai
95
 
96
- os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA"
 
97
 
98
- # Initialize ChatOpenAI
99
- llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')
100
 
101
- def predict(message, history):
102
- # Reformat history for LangChain
 
 
 
 
 
103
  history_langchain_format = []
104
  for human, ai in history:
105
  history_langchain_format.append(HumanMessage(content=human))
106
  history_langchain_format.append(AIMessage(content=ai))
107
 
108
- # Add latest human message
109
  history_langchain_format.append(HumanMessage(content=message))
110
-
111
- # Get response from the model
112
  gpt_response = llm(history_langchain_format)
113
-
114
- # Return response
115
- return gpt_response.content
116
 
117
- # Using ChatInterface to create a chat-style UI
118
- demo = gr.ChatInterface(fn=predict, type="messages")
 
 
 
 
 
 
 
 
 
 
119
 
120
  if __name__ == "__main__":
121
  demo.launch()
@@ -129,3 +96,5 @@ if __name__ == "__main__":
129
 
130
 
131
 
 
 
 
42
  # if __name__ == "__main__":
43
  # demo.launch()
44
 
45
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  import gradio as gr
47
  from langchain.chat_models import ChatOpenAI
48
  from langchain.schema import AIMessage, HumanMessage
 
49
 
50
+ # Set OpenAI API Key
51
+ os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key
52
 
53
+ # Initialize the ChatOpenAI model
54
+ llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")
55
 
56
+ # Function to predict response
57
+ def get_text_response(message, history=None):
58
+ # Ensure history is a list
59
+ if history is None:
60
+ history = []
61
+
62
+ # Convert the Gradio history format to LangChain message format
63
  history_langchain_format = []
64
  for human, ai in history:
65
  history_langchain_format.append(HumanMessage(content=human))
66
  history_langchain_format.append(AIMessage(content=ai))
67
 
68
+ # Add the new user message to the history
69
  history_langchain_format.append(HumanMessage(content=message))
70
+
71
+ # Get the model's response
72
  gpt_response = llm(history_langchain_format)
 
 
 
73
 
74
+ # Append AI response to history
75
+ history.append((message, gpt_response.content))
76
+
77
+ # Return the response and updated history
78
+ return gpt_response.content, history
79
+
80
+ # Create a Gradio chat interface
81
+ demo = gr.ChatInterface(
82
+ fn=get_text_response,
83
+ inputs=["text", "state"],
84
+ outputs=["text", "state"]
85
+ )
86
 
87
  if __name__ == "__main__":
88
  demo.launch()
 
96
 
97
 
98
 
99
+
100
+