Bhaskar2611 commited on
Commit
417a23b
·
verified ·
1 Parent(s): b3ac5bf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -11
app.py CHANGED
@@ -100,12 +100,58 @@
100
  # demo.launch()
101
 
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  import os
104
  import gradio as gr
105
  from langchain_openai import ChatOpenAI
106
  from langchain.prompts import PromptTemplate
107
  from langchain.memory import ConversationBufferMemory
108
- from langchain.chains import LLMChain
 
109
 
110
  # Set OpenAI API Key
111
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
@@ -122,21 +168,23 @@ prompt = PromptTemplate(
122
  template=template
123
  )
124
 
125
- # Initialize conversation memory
126
- memory = ConversationBufferMemory(memory_key="chat_history")
127
 
128
- # Define the LLM (language model) and chain
129
  llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
130
- llm_chain = LLMChain(
131
- llm=llm,
132
- prompt=prompt,
133
- verbose=True,
134
- memory=memory,
135
- )
136
 
137
  # Function to get chatbot response
138
  def get_text_response(user_message, history):
139
- response = llm_chain.predict(user_message=user_message)
 
 
 
 
 
140
  return response
141
 
142
  # Create a Gradio chat interface
@@ -146,3 +194,4 @@ if __name__ == "__main__":
146
  demo.launch()
147
 
148
 
 
 
100
  # demo.launch()
101
 
102
 
103
+ # import os
104
+ # import gradio as gr
105
+ # from langchain_openai import ChatOpenAI
106
+ # from langchain.prompts import PromptTemplate
107
+ # from langchain.memory import ConversationBufferMemory
108
+ # from langchain.chains import LLMChain
109
+
110
+ # # Set OpenAI API Key
111
+ # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
112
+
113
+ # # Define the template for the chatbot's response
114
+ # template = """You are a helpful assistant to answer all user queries.
115
+ # {chat_history}
116
+ # User: {user_message}
117
+ # Chatbot:"""
118
+
119
+ # # Define the prompt template
120
+ # prompt = PromptTemplate(
121
+ # input_variables=["chat_history", "user_message"],
122
+ # template=template
123
+ # )
124
+
125
+ # # Initialize conversation memory
126
+ # memory = ConversationBufferMemory(memory_key="chat_history")
127
+
128
+ # # Define the LLM (language model) and chain
129
+ # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
130
+ # llm_chain = LLMChain(
131
+ # llm=llm,
132
+ # prompt=prompt,
133
+ # verbose=True,
134
+ # memory=memory,
135
+ # )
136
+
137
+ # # Function to get chatbot response
138
+ # def get_text_response(user_message, history):
139
+ # response = llm_chain.predict(user_message=user_message)
140
+ # return response
141
+
142
+ # # Create a Gradio chat interface
143
+ # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
144
+
145
+ # if __name__ == "__main__":
146
+ # demo.launch()
147
+
148
  import os
149
  import gradio as gr
150
  from langchain_openai import ChatOpenAI
151
  from langchain.prompts import PromptTemplate
152
  from langchain.memory import ConversationBufferMemory
153
+ from langchain.schema import AIMessage, HumanMessage
154
+ from langchain.chains import RunnableSequence
155
 
156
  # Set OpenAI API Key
157
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
 
168
  template=template
169
  )
170
 
171
+ # Initialize conversation memory (following migration guide)
172
+ memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
173
 
174
+ # Define the LLM (language model)
175
  llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
176
+
177
+ # Create the RunnableSequence instead of LLMChain
178
+ llm_sequence = prompt | llm # This pipelines the prompt into the language model
 
 
 
179
 
180
  # Function to get chatbot response
181
  def get_text_response(user_message, history):
182
+ # Prepare the conversation history
183
+ chat_history = [HumanMessage(content=user_message)]
184
+
185
+ # Pass the prompt and history to the language model sequence
186
+ response = llm_sequence.invoke({"chat_history": history, "user_message": user_message})
187
+
188
  return response
189
 
190
  # Create a Gradio chat interface
 
194
  demo.launch()
195
 
196
 
197
+