Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,35 +3,6 @@
|
|
3 |
# from langchain.chat_models import ChatOpenAI
|
4 |
# from langchain import LLMChain, PromptTemplate
|
5 |
# from langchain.memory import ConversationBufferMemory
|
6 |
-
|
7 |
-
# OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
|
8 |
-
|
9 |
-
# template = """You are a helpful assistant to answer all user queries.
|
10 |
-
# {chat_history}
|
11 |
-
# User: {user_message}
|
12 |
-
# Chatbot:"""
|
13 |
-
|
14 |
-
# prompt = PromptTemplate(
|
15 |
-
# input_variables=["chat_history", "user_message"], template=template
|
16 |
-
# )
|
17 |
-
|
18 |
-
# memory = ConversationBufferMemory(memory_key="chat_history")
|
19 |
-
|
20 |
-
# llm_chain = LLMChain(
|
21 |
-
# llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"),
|
22 |
-
# prompt=prompt,
|
23 |
-
# verbose=True,
|
24 |
-
# memory=memory,
|
25 |
-
# )
|
26 |
-
|
27 |
-
# def get_text_response(user_message,history):
|
28 |
-
# response = llm_chain.predict(user_message = user_message)
|
29 |
-
# return response
|
30 |
-
|
31 |
-
# demo = gr.ChatInterface(get_text_response)
|
32 |
-
|
33 |
-
# if __name__ == "__main__":
|
34 |
-
# demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.
|
35 |
import os
|
36 |
import gradio as gr
|
37 |
from langchain.chat_models import ChatOpenAI
|
@@ -39,40 +10,75 @@ from langchain.prompts import PromptTemplate
|
|
39 |
from langchain.chains import LLMChain
|
40 |
from langchain.memory import ConversationBufferMemory
|
41 |
|
42 |
-
|
43 |
-
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
44 |
|
45 |
-
# Define the template for the chatbot's response
|
46 |
template = """You are a helpful assistant to answer all user queries.
|
47 |
{chat_history}
|
48 |
User: {user_message}
|
49 |
Chatbot:"""
|
50 |
|
51 |
-
# Define the prompt template
|
52 |
prompt = PromptTemplate(
|
53 |
-
input_variables=["chat_history", "user_message"],
|
54 |
-
template=template
|
55 |
)
|
56 |
|
57 |
-
# Initialize conversation memory
|
58 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
59 |
|
60 |
-
# Define the LLM chain with the ChatOpenAI model and conversation memory
|
61 |
llm_chain = LLMChain(
|
62 |
-
llm=ChatOpenAI(temperature=0.5,
|
63 |
prompt=prompt,
|
64 |
verbose=True,
|
65 |
memory=memory,
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
response = llm_chain.predict(user_message=user_message)
|
71 |
return response
|
72 |
|
73 |
-
|
74 |
-
demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
3 |
# from langchain.chat_models import ChatOpenAI
|
4 |
# from langchain import LLMChain, PromptTemplate
|
5 |
# from langchain.memory import ConversationBufferMemory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import os
|
7 |
import gradio as gr
|
8 |
from langchain.chat_models import ChatOpenAI
|
|
|
10 |
from langchain.chains import LLMChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
|
13 |
+
OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
|
|
|
14 |
|
|
|
15 |
template = """You are a helpful assistant to answer all user queries.
|
16 |
{chat_history}
|
17 |
User: {user_message}
|
18 |
Chatbot:"""
|
19 |
|
|
|
20 |
prompt = PromptTemplate(
|
21 |
+
input_variables=["chat_history", "user_message"], template=template
|
|
|
22 |
)
|
23 |
|
|
|
24 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
25 |
|
|
|
26 |
llm_chain = LLMChain(
|
27 |
+
llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"),
|
28 |
prompt=prompt,
|
29 |
verbose=True,
|
30 |
memory=memory,
|
31 |
)
|
32 |
|
33 |
+
def get_text_response(user_message,history):
|
34 |
+
response = llm_chain.predict(user_message = user_message)
|
|
|
35 |
return response
|
36 |
|
37 |
+
demo = gr.ChatInterface(get_text_response)
|
|
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
+
demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.
|
41 |
+
# import os
|
42 |
+
# import gradio as gr
|
43 |
+
# from langchain.chat_models import ChatOpenAI
|
44 |
+
# from langchain.prompts import PromptTemplate
|
45 |
+
# from langchain.chains import LLMChain
|
46 |
+
# from langchain.memory import ConversationBufferMemory
|
47 |
+
|
48 |
+
# # Get API key from environment variable
|
49 |
+
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
50 |
+
|
51 |
+
# # Define the template for the chatbot's response
|
52 |
+
# template = """You are a helpful assistant to answer all user queries.
|
53 |
+
# {chat_history}
|
54 |
+
# User: {user_message}
|
55 |
+
# Chatbot:"""
|
56 |
+
|
57 |
+
# # Define the prompt template
|
58 |
+
# prompt = PromptTemplate(
|
59 |
+
# input_variables=["chat_history", "user_message"],
|
60 |
+
# template=template
|
61 |
+
# )
|
62 |
+
|
63 |
+
# # Initialize conversation memory
|
64 |
+
# memory = ConversationBufferMemory(memory_key="chat_history")
|
65 |
+
|
66 |
+
# # Define the LLM chain with the ChatOpenAI model and conversation memory
|
67 |
+
# llm_chain = LLMChain(
|
68 |
+
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
|
69 |
+
# prompt=prompt,
|
70 |
+
# verbose=True,
|
71 |
+
# memory=memory,
|
72 |
+
# )
|
73 |
+
|
74 |
+
# # Function to get chatbot response
|
75 |
+
# def get_text_response(user_message, history):
|
76 |
+
# response = llm_chain.predict(user_message=user_message)
|
77 |
+
# return response
|
78 |
+
|
79 |
+
# # Create a Gradio chat interface
|
80 |
+
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
|
81 |
+
|
82 |
+
# if __name__ == "__main__":
|
83 |
+
# demo.launch()
|
84 |
|