# import os # import gradio as gr # from langchain.chat_models import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.chains import LLMChain # from langchain.memory import ConversationBufferMemory # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory # memory = ConversationBufferMemory(memory_key="chat_history") # # Define the LLM chain with the ChatOpenAI model and conversation memory # llm_chain = LLMChain( # llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name' # prompt=prompt, # verbose=True, # memory=memory, # ) # # Function to get chatbot response # def get_text_response(user_message, history): # response = llm_chain.predict(user_message=user_message) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import subprocess # # Run the Bash script that installs dependencies and runs the app # subprocess.run(['./run.sh']) # # Rest of your application code can go here # import subprocess # import os # # Ensure the run.sh script has executable permissions # # subprocess.run(['chmod', '+x', './run.sh']) # # Run the Bash script that installs dependencies and runs the app # # subprocess.run(['./run.sh']) # import gradio as gr # from langchain_openai import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.memory import ConversationBufferMemory # from langchain.chains import RunnableSequence # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory # memory = ConversationBufferMemory(memory_key="chat_history") # # Define the LLM (language model) # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo") # # Define the chain using RunnableSequence (replace LLMChain) # llm_chain = prompt | llm # Chaining the prompt and the LLM # # Function to get chatbot response # def get_text_response(user_message, history): # inputs = {"chat_history": history, "user_message": user_message} # response = llm_chain(inputs) # return response['text'] # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import os # import gradio as gr # from langchain_openai import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.memory import ConversationBufferMemory # from langchain.chains import LLMChain # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory # memory = ConversationBufferMemory(memory_key="chat_history") # # Define the LLM (language model) and chain # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo") # llm_chain = LLMChain( # llm=llm, # prompt=prompt, # verbose=True, # memory=memory, # ) # # Function to get chatbot response # def get_text_response(user_message, history): # response = llm_chain.predict(user_message=user_message) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import os # import gradio as gr # from langchain_openai import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.memory import ConversationBufferMemory # from langchain.schema import AIMessage, HumanMessage # from langchain.chains import RunnableSequence # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory (following migration guide) # memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage # # Define the LLM (language model) # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo") # # Create the RunnableSequence instead of LLMChain # llm_sequence = prompt | llm # This pipelines the prompt into the language model # # Function to get chatbot response # def get_text_response(user_message, history): # # Prepare the conversation history # chat_history = [HumanMessage(content=user_message)] # # Pass the prompt and history to the language model sequence # response = llm_sequence.invoke({"chat_history": history, "user_message": user_message}) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import os # import gradio as gr # from langchain_openai import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.memory import ConversationBufferMemory # from langchain.schema import AIMessage, HumanMessage # from langchain import Runnable # Using Runnable instead of RunnableSequence # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory (following migration guide) # memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage # # Define the LLM (language model) # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo") # # Create the Runnable instead of RunnableSequence # llm_runnable = Runnable(lambda inputs: prompt.format(**inputs)) | llm # # Function to get chatbot response # def get_text_response(user_message, history): # # Prepare the conversation history # chat_history = [HumanMessage(content=user_message)] # # Pass the prompt and history to the language model sequence # response = llm_runnable.invoke({"chat_history": history, "user_message": user_message}) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import os # import subprocess # import gradio as gr # # Install necessary packages # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"]) # from langchain_openai import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.chains import LLMChain # from langchain.memory import ConversationBufferMemory # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory # memory = ConversationBufferMemory(memory_key="chat_history") # # Define the LLM chain with the ChatOpenAI model and conversation memory # llm_chain = LLMChain( # llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name' # prompt=prompt, # verbose=True, # memory=memory, # ) # # Function to get chatbot response # def get_text_response(user_message, history): # # Prepare the conversation history # chat_history = history + [f"User: {user_message}"] # response = llm_chain.predict(user_message=user_message, chat_history=chat_history) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import os # import subprocess # import gradio as gr # # Install necessary packages # subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"]) # from langchain_openai import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.memory import ConversationBufferMemory # from langchain.chains import Runnable, RunnableSequence # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory # memory = ConversationBufferMemory(memory_key="chat_history") # # Define the runnable sequence # chatbot_runnable = RunnableSequence(prompt | ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")) # # Function to get chatbot response # def get_text_response(user_message, history=None): # # Ensure history is a list # if history is None: # history = [] # # Prepare the conversation history # chat_history = history + [f"User: {user_message}"] # response = chatbot_runnable.invoke({"chat_history": "\n".join(chat_history), "user_message": user_message}) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text") # if __name__ == "__main__": # demo.launch() import os import subprocess import gradio as gr # Install necessary packages subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"]) from langchain_openai import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory # Set OpenAI API Key OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # Define the template for the chatbot's response template = """You are a helpful assistant to answer all user queries. {chat_history} User: {user_message} Chatbot:""" # Define the prompt template prompt = PromptTemplate( input_variables=["chat_history", "user_message"], template=template ) # Initialize conversation memory memory = ConversationBufferMemory(memory_key="chat_history") # Function to get chatbot response def get_text_response(user_message, history=None): # Ensure history is a list if history is None: history = [] # Prepare the conversation history chat_history = history + [f"User: {user_message}"] llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo") response = llm({"chat_history": "\n".join(chat_history), "user_message": user_message}) return response['choices'][0]['message']['content'] # Create a Gradio chat interface demo = gr.Interface(fn=get_text_response, inputs=["text", "state"], outputs="text") if __name__ == "__main__": demo.launch()