# import os # import gradio as gr # from langchain.chat_models import ChatOpenAI # from langchain.prompts import PromptTemplate # from langchain.chains import LLMChain # from langchain.memory import ConversationBufferMemory # # Set OpenAI API Key # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') # # Define the template for the chatbot's response # template = """You are a helpful assistant to answer all user queries. # {chat_history} # User: {user_message} # Chatbot:""" # # Define the prompt template # prompt = PromptTemplate( # input_variables=["chat_history", "user_message"], # template=template # ) # # Initialize conversation memory # memory = ConversationBufferMemory(memory_key="chat_history") # # Define the LLM chain with the ChatOpenAI model and conversation memory # llm_chain = LLMChain( # llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name' # prompt=prompt, # verbose=True, # memory=memory, # ) # # Function to get chatbot response # def get_text_response(user_message, history): # response = llm_chain.predict(user_message=user_message) # return response # # Create a Gradio chat interface # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") # if __name__ == "__main__": # demo.launch() # import os # import gradio as gr # from langchain.chat_models import ChatOpenAI # from langchain.schema import AIMessage, HumanMessage # # Set OpenAI API Key # os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key # # Initialize the ChatOpenAI model # llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613") # # Function to predict response # def get_text_response(message, history=None): # # Ensure history is a list # if history is None: # history = [] # # Convert the Gradio history format to LangChain message format # history_langchain_format = [] # for human, ai in history: # history_langchain_format.append(HumanMessage(content=human)) # history_langchain_format.append(AIMessage(content=ai)) # # Add the new user message to the history # history_langchain_format.append(HumanMessage(content=message)) # # Get the model's response # gpt_response = llm(history_langchain_format) # # Append AI response to history # history.append((message, gpt_response.content)) # # Return the response and updated history # return gpt_response.content, history # # Create a Gradio chat interface # demo = gr.ChatInterface( # fn=get_text_response, # inputs=["text", "state"], # outputs=["text", "state"] # ) # if __name__ == "__main__": # demo.launch() import os # Import the os module import time import gradio as gr from langchain_community.chat_models import ChatOpenAI # Updated import based on deprecation warning from langchain.schema import AIMessage, HumanMessage import openai # Set your OpenAI API key os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your OpenAI key # Initialize ChatOpenAI llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613') def predict(message, history): # Reformat history for LangChain history_langchain_format = [] for human, ai in history: history_langchain_format.append(HumanMessage(content=human)) history_langchain_format.append(AIMessage(content=ai)) # Add latest human message history_langchain_format.append(HumanMessage(content=message)) # Get response from the model gpt_response = llm(history_langchain_format) # Return response return gpt_response.content # Using ChatInterface to create a chat-style UI demo = gr.ChatInterface(fn=predict, type="messages") if __name__ == "__main__": demo.launch()