File size: 5,275 Bytes
e675232
26c3bae
d4c7697
26c3bae
 
 
e675232
 
26c3bae
 
 
 
 
 
 
e675232
26c3bae
 
 
 
 
 
 
e675232
26c3bae
e675232
26c3bae
e675232
26c3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e675232
26c3bae
e675232
26c3bae
 
e675232
26c3bae
e675232
26c3bae
 
 
 
 
 
 
 
 
 
e675232
26c3bae
e675232
 
 
 
 
 
 
d4c7697
e675232
d4c7697
e675232
 
 
 
 
 
 
26c3bae
 
 
e675232
 
 
 
 
 
 
26c3bae
 
e675232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c3bae
e675232
 
6da0a2d
e675232
26c3bae
e675232
d4c7697
26c3bae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# from huggingface_hub import InferenceClient
# import gradio as gr

# client = InferenceClient(
#     "mistralai/Mistral-7B-Instruct-v0.3"
# )


# def format_prompt(message, history):
#   prompt = "<s>"
#   for user_prompt, bot_response in history:
#     prompt += f"[INST] {user_prompt} [/INST]"
#     prompt += f" {bot_response}</s> "
#   prompt += f"[INST] {message} [/INST]"
#   return prompt

# def generate(
#     prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
# ):
#     temperature = float(temperature)
#     if temperature < 1e-2:
#         temperature = 1e-2
#     top_p = float(top_p)

#     generate_kwargs = dict(
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         repetition_penalty=repetition_penalty,
#         do_sample=True,
#         seed=42,
#     )

#     formatted_prompt = format_prompt(prompt, history)

#     stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
#     output = ""

#     for response in stream:
#         output += response.token.text
#         yield output
#     return output


# additional_inputs=[
#     gr.Slider(
#         label="Temperature",
#         value=0.9,
#         minimum=0.0,
#         maximum=1.0,
#         step=0.05,
#         interactive=True,
#         info="Higher values produce more diverse outputs",
#     ),
#     gr.Slider(
#         label="Max new tokens",
#         value=256,
#         minimum=0,
#         maximum=1048,
#         step=64,
#         interactive=True,
#         info="The maximum numbers of new tokens",
#     ),
#     gr.Slider(
#         label="Top-p (nucleus sampling)",
#         value=0.90,
#         minimum=0.0,
#         maximum=1,
#         step=0.05,
#         interactive=True,
#         info="Higher values sample more low-probability tokens",
#     ),
#     gr.Slider(
#         label="Repetition penalty",
#         value=1.2,
#         minimum=1.0,
#         maximum=2.0,
#         step=0.05,
#         interactive=True,
#         info="Penalize repeated tokens",
#     )
# ]


# gr.ChatInterface(
#     fn=generate,
#     chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
#     additional_inputs=additional_inputs,
#     title="""AI Dermatologist"""
# ).launch(show_api=False)


# gr.load("models/Bhaskar2611/Capstone").launch()
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the client with your desired model
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Define the system prompt as an AI Dermatologist
def format_prompt(message, history):
    prompt = "<s>"
    # Start the conversation with a system message
    prompt += "[INST] You are an AI Dermatologist designed to assist users with skin and hair care.[/INST]"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

# Function to generate responses with the AI Dermatologist context
def generate(
    prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
    )
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

# Customizable input controls for the chatbot interface
additional_inputs = [
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

# Define the chatbot interface with the starting system message as AI Dermatologist
gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="AI Dermatologist"
).launch(show_api=False)

# Load your model after launching the interface
gr.load("models/Bhaskar2611/Capstone").launch()