CODE_HUNT / app.py
Bhaskar2611's picture
Update app.py
f9580ed verified
raw
history blame
4.29 kB
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the client with your desired model
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
# prompt = "<s>"
# # Start the conversation with a system message
# prompt += "[INST] You are a Travel Companion Chatbot that helps users plan trips by suggesting transport, sightseeing stops, and accommodations based on their preferences. [/INST]"
# for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response}</s> "
# prompt += f"[INST] {message} [/INST]"
# return prompt
# def format_prompt(message, history):
# prompt = "<s>"
# # Start the conversation with a system message
# prompt += "[INST] You are a Travel Companion Chatbot that helps users plan trips by suggesting transport, sightseeing stops, and accommodations based on their preferences. Please assist the user by asking what they need to know. [/INST]"
# # Only append the user message, without the historical responses or examples
# prompt += f"[INST] {message} [/INST]"
# return prompt
def format_prompt(message):
prompt = "<s>"
# System message to set the context of the AI's purpose
prompt += "[INST] You are a Travel Companion chatbot designed to assist users in planning their trips. When a user provides the source, destination, and the number of days they are planning for a trip, you should respond by:\n"
prompt += "- Suggesting the best travel options (bus, train, flight, etc.) with cost-effective choices.\n"
prompt += "- Recommending cost-effective hotels and restaurants along the route.\n"
prompt += "- Highlighting the best places to visit on the route.\n"
prompt += "Please respond directly to the user's input with a detailed plan, without repeating their message. [/INST]"
# Include the user's message as the input to be processed
prompt += f"{message}"
return prompt
# Function to generate responses with the AI Dermatologist context
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
)
output = ""
for response in stream:
output += response.token.text
yield output
return output
# Customizable input controls for the chatbot interface
additional_inputs = [
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
# Define the chatbot interface with the starting system message as AI Dermatologist
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
additional_inputs=additional_inputs,
title="Travel Companion Chatbot"
).launch(show_api=False)
# Load your model after launching the interface
gr.load("models/Bhaskar2611/Capstone").launch()