File size: 6,238 Bytes
ed84601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29e18ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed84601
f8808ca
 
ed84601
 
29e18ff
ed84601
29e18ff
ed84601
29e18ff
ed84601
 
 
 
 
29e18ff
 
ed84601
29e18ff
ed84601
 
29e18ff
ed84601
29e18ff
 
 
 
ed84601
 
29e18ff
ed84601
 
 
 
 
 
 
 
 
29e18ff
ed84601
 
 
29e18ff
 
 
 
f8808ca
29e18ff
ed84601
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# import gradio as gr
# from huggingface_hub import InferenceClient

# # Initialize the client with your desired model
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
#     prompt = "<s>"
#     # Start the conversation with a system message
#     prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with only hair care by only providing text and if user information is not provided related to hair then ask what they want to know related to hair.[/INST]"
#     for user_prompt, bot_response in history:
#         prompt += f"[INST] {user_prompt} [/INST]"
#         prompt += f" {bot_response}</s> "
#     prompt += f"[INST] {message} [/INST]"
#     return prompt

# # Function to generate responses with the AI Dermatologist context
# def generate(
#     prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
# ):
#     temperature = float(temperature)
#     if temperature < 1e-2:
#         temperature = 1e-2
#     top_p = float(top_p)

#     generate_kwargs = dict(
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         repetition_penalty=repetition_penalty,
#         do_sample=True,
#         seed=42,
#     )

#     formatted_prompt = format_prompt(prompt, history)

#     stream = client.text_generation(
#         formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
#     )
#     output = ""

#     for response in stream:
#         output += response.token.text
#         yield output
#     return output

# # Customizable input controls for the chatbot interface
# Settings = [
#     gr.Slider(
#         label="Temperature",
#         value=0.9,
#         minimum=0.0,
#         maximum=1.0,
#         step=0.05,
#         interactive=True,
#         info="Higher values produce more diverse outputs",
#     ),
#     gr.Slider(
#         label="Max new tokens",
#         value=256,
#         minimum=0,
#         maximum=1048,
#         step=64,
#         interactive=True,
#         info="The maximum numbers of new tokens",
#     ),
#     gr.Slider(
#         label="Top-p (nucleus sampling)",
#         value=0.90,
#         minimum=0.0,
#         maximum=1,
#         step=0.05,
#         interactive=True,
#         info="Higher values sample more low-probability tokens",
#     ),
#     gr.Slider(
#         label="Repetition penalty",
#         value=1.2,
#         minimum=1.0,
#         maximum=2.0,
#         step=0.05,
#         interactive=True,
#         info="Penalize repeated tokens",
#     )
# ]
# # Define the chatbot interface with the starting system message as AI Dermatologist
# gr.ChatInterface(
#     fn=generate,
#     chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
#     additional_inputs = Settings,
#     title="Hair bot"
# ).launch(show_api=False)

# # Load your model after launching the interface
# gr.load("models/Bhaskar2611/Capstone").launch()

# import os
# import gradio as gr
# from huggingface_hub import InferenceClient
# from dotenv import load_dotenv

# # Load API token from .env or environment
# load_dotenv()
# HF_TOKEN = os.getenv("HF_TOKEN")  # or directly use your token here

# # Initialize the Hugging Face inference client
# client = InferenceClient(
#     model="mistralai/Mistral-7B-Instruct-v0.3",
#     token=HF_TOKEN
# )

# # Skin assistant prompt
# HAIR_ASSISTANT_PROMPT = (
#     "You are an AI Dermatologist chatbot designed to assist users with Hair by only providing text "
#     "and if user information is not provided related to Hair then ask what they want to know related to Hair."
# )

# def respond(message, history):
#     messages = [{"role": "system", "content": HAIR_ASSISTANT_PROMPT}]
#     for user_msg, bot_msg in history:
#         if user_msg:
#             messages.append({"role": "user", "content": user_msg})
#         if bot_msg:
#             messages.append({"role": "assistant", "content": bot_msg})
#     messages.append({"role": "user", "content": message})

#     response = ""
#     for chunk in client.chat.completions.create(
#         model="mistralai/Mistral-7B-Instruct-v0.3",
#         messages=messages,
#         max_tokens=1024,
#         temperature=0.7,
#         top_p=0.95,
#         stream=True,
#     ):
#         token = chunk.choices[0].delta.get("content", "")
#         response += token
#         yield response

# # Launch Gradio interface
# demo = gr.ChatInterface(
#     fn=respond,
#     title="Hair-Bot",
#     theme="default"
# )

# if __name__ == "__main__":
#     demo.launch()
import os
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv

# Load Hugging Face API token
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize Hugging Face client
client = InferenceClient(
    model="mistralai/Mistral-7B-Instruct-v0.3",
    token=HF_TOKEN
)

# System prompt about Indian monuments
system_message = (
    "You are an AI Dermatologist chatbot designed to assist users with Hair by only providing text "
    "and if user information is not provided related to Hair then ask what they want to know related to Hair."   
)

# Streaming chatbot logic
def respond(message, history):
    # Prepare messages with system prompt
    messages = [{"role": "system", "content": system_message}]
    for msg in history:
        messages.append(msg)
    messages.append({"role": "user", "content": message})

    # Stream response from the model
    response = ""
    for chunk in client.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.3",
        messages=messages,
        max_tokens=1024,
        temperature=0.7,
        top_p=0.95,
        stream=True,
    ):
        token = chunk.choices[0].delta.get("content", "") or ""
        response += token
        yield response

# Create Gradio interface
with gr.Blocks() as demo:
    chatbot = gr.Chatbot(type='messages')  # Use modern message format
    gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages")  # Match format

# Launch app
if __name__ == "__main__":
    demo.launch()