Spaces:
Sleeping
Sleeping
Update llm_tool.py
Browse files- llm_tool.py +23 -9
llm_tool.py
CHANGED
@@ -1,19 +1,33 @@
|
|
1 |
import os
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def analyze_data(prompt):
|
5 |
"""
|
6 |
-
Use
|
7 |
"""
|
8 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
-
if not HF_TOKEN:
|
10 |
-
return "Error: Hugging Face token not found in environment variables"
|
11 |
-
|
12 |
try:
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
-
|
|
|
|
|
|
|
18 |
except Exception as e:
|
19 |
return f"LLM generation failed: {str(e)}"
|
|
|
1 |
import os
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Initialize client without provider (Hugging Face handles routing)
|
5 |
+
client = InferenceClient(
|
6 |
+
model="Qwen/Qwen2.5-7B-Instruct",
|
7 |
+
token=os.environ.get("HF_TOKEN") # Make sure HF_TOKEN is set in Secrets
|
8 |
+
)
|
9 |
+
|
10 |
def analyze_data(prompt):
|
11 |
"""
|
12 |
+
Use chat completions API to generate insights from raw search data
|
13 |
"""
|
|
|
|
|
|
|
|
|
14 |
try:
|
15 |
+
# Format prompt as a chat message
|
16 |
+
messages = [
|
17 |
+
{
|
18 |
+
"role": "user",
|
19 |
+
"content": prompt
|
20 |
+
}
|
21 |
+
]
|
22 |
+
|
23 |
+
# Get response from LLM
|
24 |
+
completion = client.chat.completions.create(
|
25 |
+
messages=messages,
|
26 |
+
max_tokens=500 # Control response length
|
27 |
)
|
28 |
+
|
29 |
+
# Return only the content part of the response
|
30 |
+
return completion.choices[0].message.content
|
31 |
+
|
32 |
except Exception as e:
|
33 |
return f"LLM generation failed: {str(e)}"
|