BigSalmon's picture
Update app.py
76f9de4
raw
history blame
3.64 kB
import json
import requests
import streamlit as st
import random
headers = {}
MODELS = {
"GPT-2 Base": {
"url": "https://api-inference.huggingface.co/models/BigSalmon/InformalToFormalLincoln14"
}
}
def query(payload, model_name):
data = json.dumps(payload)
print("model url:", MODELS[model_name]["url"])
response = requests.request(
"POST", MODELS[model_name]["url"], headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
def process(text: str,
model_name: str,
max_len: int,
temp: float,
top_k: int,
num_return_sequences:int,
top_p: float):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"num_return_sequences": num_return_sequences,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
}
}
return query(payload, model_name)
st.set_page_config(page_title="Thai GPT2 Demo")
st.title("🐘 Thai GPT2")
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.text_input(
"Maximum length",
value=5,
help="The maximum length of the sequence to be generated."
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.7,
max_value=1.5,
help="The value used to module the next token probabilities."
)
top_k = st.sidebar.text_input(
"Top k",
value=50,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
num_return_sequences = st.sidebar.text_input(
"Returns",
value=5,
help="Number to return."
)
top_p = st.sidebar.text_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)
do_sample = st.sidebar.selectbox(
'Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")
st.markdown(
"""Thai GPT-2 demo. Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/)."""
)
model_name = st.selectbox('Model', (['GPT-2 Base']))
hello = ['Custom', 'Yellow']
prompt = st.selectbox('Prompt', options = hello)
if prompt == "Custom":
prompt_box = "Enter your text here"
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
st.subheader("Result")
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
num_return_sequences = int(num_return_sequences),
top_k=int(top_k),
top_p=float(top_p))
result2 = []
text = str(text)
for i in result:
i = str(i)
i = i.replace(text, "")
result2.append(i)
st.write(result2)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}. Please try it again in about {result["estimated_time"]:.0f} seconds')
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f'{error}')
else:
print("hey")