Spaces:
Runtime error
Runtime error
Commit
·
bb2feab
1
Parent(s):
cf6d28d
Delete app.py
Browse files
app.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
import torch
|
5 |
-
|
6 |
-
from timeit import default_timer as timer
|
7 |
-
from typing import Tuple, Dict
|
8 |
-
|
9 |
-
#class names
|
10 |
-
with open('class_names.txt', "r") as f:
|
11 |
-
class_names = [car.strip() for car in f.readlines()]
|
12 |
-
|
13 |
-
|
14 |
-
#model and transforms preparation
|
15 |
-
effnetb0_weights = models.EfficientNet_B0_Weights.DEFAULT
|
16 |
-
effnetb0 = torchvision.models.efficientnet_b0(weights = effnetb0_weights)
|
17 |
-
effnetb0_transforms = effnetb0_weights.transforms()
|
18 |
-
|
19 |
-
#freeze params
|
20 |
-
for param in effnetb0.parameters():
|
21 |
-
param.requires_grad = False
|
22 |
-
|
23 |
-
#change classifier
|
24 |
-
effnetb0.classifier = nn.Sequential(
|
25 |
-
nn.Dropout(p=.2),
|
26 |
-
nn.Linear(in_features = 1280,
|
27 |
-
out_features = 196)
|
28 |
-
)
|
29 |
-
|
30 |
-
#load saved weights
|
31 |
-
effnetb0.load_state_dict(torch.load('stanford_cars/pretrained_effnetb0_stanford_cars_20_percent.pth.pth'),
|
32 |
-
map_location=torch.device("cpu"))
|
33 |
-
|
34 |
-
|
35 |
-
#predict function
|
36 |
-
|
37 |
-
def predict(img) -> Tuple[Dict, float]:
|
38 |
-
|
39 |
-
start_time = timer()
|
40 |
-
|
41 |
-
#put model into eval mode
|
42 |
-
effnetb0.eval()
|
43 |
-
|
44 |
-
with torch.inference_mode():
|
45 |
-
pred_logits = effnetb0(img.unsqueeze(0))
|
46 |
-
pred_probs = torch.softmax(pred_logits, dim = 1)
|
47 |
-
|
48 |
-
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
49 |
-
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
50 |
-
|
51 |
-
end_time = timer()
|
52 |
-
|
53 |
-
time = round(end_time - start_time, 5)
|
54 |
-
|
55 |
-
return pred_labels_and_probs, time
|
56 |
-
|
57 |
-
|
58 |
-
#gradio app
|
59 |
-
|
60 |
-
title = 'effnetb0'
|
61 |
-
description = 'Pretrained effnetb0 model on stanford cars dataset'
|
62 |
-
|
63 |
-
#create example list
|
64 |
-
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
65 |
-
|
66 |
-
# Create Gradio interface
|
67 |
-
demo = gr.Interface(
|
68 |
-
fn=predict,
|
69 |
-
inputs=gr.Image(type="pil"),
|
70 |
-
outputs=[
|
71 |
-
gr.Label(num_top_classes=5, label="Predictions"),
|
72 |
-
gr.Number(label="Prediction time (s)"),
|
73 |
-
],
|
74 |
-
examples=example_list,
|
75 |
-
title=title,
|
76 |
-
description=description
|
77 |
-
|
78 |
-
)
|
79 |
-
|
80 |
-
# Launch the app!
|
81 |
-
demo.launch()
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|