Spaces:
Sleeping
Sleeping
File size: 2,931 Bytes
145d936 d4b4544 4337f3a 7b1bb08 dd29269 4337f3a e62d9f5 3920f3b 7064c41 c1d7645 e62d9f5 d4b4544 7064c41 d4b4544 145d936 d4b4544 e62d9f5 7064c41 beb65ba d4b4544 7064c41 beb65ba 891d450 beb65ba 7064c41 d4b4544 7064c41 3e3d3c7 7b1bb08 3e3d3c7 b3fecd4 d4b4544 e62d9f5 dd29269 e62d9f5 4337f3a e62d9f5 dd29269 e62d9f5 145d936 dd29269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import spaces
import gradio as gr
import fitz # PyMuPDF
import ocrmypdf
import tempfile
import os
def extract_text_markdown(doc):
markdown_output = ""
image_counter = 1
for page in doc:
blocks = page.get_text("dict")["blocks"]
lines_group = []
elements = []
for b in blocks:
y = b["bbox"][1]
if b["type"] == 0: # Texto
for line in b["lines"]:
spans = line["spans"]
cells = []
for span in spans:
cells.append((span["bbox"][0], span["text"])) # (x, texto)
if len(cells) > 1:
lines_group.append((line["bbox"][1], cells)) # (y, columnas)
else:
line_text = " ".join(span["text"] for span in spans).strip()
if line_text:
elements.append((line["bbox"][1], line_text))
elif b["type"] == 1: # Imagen
elements.append((y, f"[imagen_{image_counter}]()"))
image_counter += 1
# Detectar tablas rudimentarias
if len(lines_group) >= 2:
# Ordenar por coordenada vertical
lines_group.sort(key=lambda x: x[0])
header_cells = [cell[1].strip() for cell in lines_group[0][1]]
markdown_output += "| " + " | ".join(header_cells) + " |\n"
markdown_output += "| " + " | ".join(["---"] * len(header_cells)) + " |\n"
for y, row in lines_group[1:]:
row_cells = [cell[1].strip() for cell in row]
markdown_output += "| " + " | ".join(row_cells) + " |\n"
markdown_output += "\n"
# Agregar líneas de texto sueltas
elements.sort(key=lambda x: x[0])
previous_y = None
for y, content in elements:
if previous_y is not None and abs(y - previous_y) > 10:
markdown_output += "\n"
markdown_output += content + "\n"
previous_y = y
markdown_output += "\n---\n\n"
return markdown_output.strip()
@spaces.GPU
def convert(pdf_file):
original_doc = fitz.open(pdf_file)
plain_text = "\n".join([page.get_text() for page in original_doc])
# Aplicar OCR solo si el PDF no tiene texto
if len(plain_text.strip()) < 100:
ocr_temp_path = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False).name
ocrmypdf.ocr(pdf_file, ocr_temp_path, force_ocr=True)
doc = fitz.open(ocr_temp_path)
else:
doc = original_doc
markdown = extract_text_markdown(doc)
metadata = {} # Si necesitas metadatos, se pueden agregar aquí
return markdown, metadata
gr.Interface(
fn=convert,
inputs=[gr.File(label="Sube tu PDF", type="filepath")],
outputs=[gr.Text(label="Markdown estructurado"), gr.JSON(label="Metadata")],
).launch()
|