Spaces:
Running
Running
import spaces | |
import gradio as gr | |
import fitz # PyMuPDF | |
import ocrmypdf | |
import tempfile | |
import os | |
def extract_text_markdown(doc): | |
markdown_output = "" | |
image_counter = 1 # Contador de im谩genes | |
for page in doc: | |
blocks = page.get_text("dict")["blocks"] | |
elements = [] | |
for b in blocks: | |
y = b["bbox"][1] | |
if b["type"] == 0: # Texto | |
for line in b["lines"]: | |
line_y = line["bbox"][1] | |
line_text = " ".join([span["text"] for span in line["spans"]]).strip() | |
if line_text: | |
elements.append((line_y, line_text)) | |
elif b["type"] == 1: # Imagen | |
# A帽ade un enlace con nombre 煤nico | |
elements.append((y, f"[imagen_{image_counter}]()")) | |
image_counter += 1 | |
# Ordenar por posici贸n vertical | |
elements.sort(key=lambda x: x[0]) | |
# Reconstrucci贸n con saltos l贸gicos | |
previous_y = None | |
for y, content in elements: | |
if previous_y is not None and abs(y - previous_y) > 10: | |
markdown_output += "\n" | |
markdown_output += content + "\n" | |
previous_y = y | |
markdown_output += "\n---\n\n" | |
return markdown_output.strip() | |
def convert(pdf_file): | |
original_doc = fitz.open(pdf_file) | |
plain_text = "\n".join([page.get_text() for page in original_doc]) | |
# Aplicar OCR solo si el PDF no tiene texto | |
if len(plain_text.strip()) < 100: | |
ocr_temp_path = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False).name | |
ocrmypdf.ocr(pdf_file, ocr_temp_path, force_ocr=True) | |
doc = fitz.open(ocr_temp_path) | |
else: | |
doc = original_doc | |
markdown = extract_text_markdown(doc) | |
metadata = {} # Si necesitas metadatos, se pueden agregar aqu铆 | |
return markdown, metadata | |
gr.Interface( | |
fn=convert, | |
inputs=[gr.File(label="Sube tu PDF", type="filepath")], | |
outputs=[gr.Text(label="Markdown estructurado"), gr.JSON(label="Metadata")], | |
).launch() | |