import spaces import gradio as gr import fitz # PyMuPDF import ocrmypdf import tempfile import os def extract_text_markdown(doc): markdown_output = "" for page in doc: blocks = page.get_text("dict")["blocks"] elements = [] for b in blocks: y = b["bbox"][1] if b["type"] == 0: # Texto for line in b["lines"]: line_y = line["bbox"][1] line_text = " ".join([span["text"] for span in line["spans"]]).strip() if line_text: elements.append((line_y, line_text)) elif b["type"] == 1: # Imagen elements.append((y, "[imagen]()")) # Enlace vacío # Ordenar por posición vertical elements.sort(key=lambda x: x[0]) # Reconstruir con saltos previous_y = None for y, content in elements: if previous_y is not None and abs(y - previous_y) > 10: markdown_output += "\n" markdown_output += content + "\n" previous_y = y markdown_output += "\n---\n\n" return markdown_output.strip() @spaces.GPU def convert(pdf_file): original_doc = fitz.open(pdf_file) plain_text = "\n".join([page.get_text() for page in original_doc]) # Aplicar OCR solo si el PDF no tiene texto if len(plain_text.strip()) < 100: ocr_temp_path = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False).name ocrmypdf.ocr(pdf_file, ocr_temp_path, force_ocr=True) doc = fitz.open(ocr_temp_path) else: doc = original_doc markdown = extract_text_markdown(doc) metadata = {} # Si necesitas metadatos, se pueden agregar aquí return markdown, metadata gr.Interface( fn=convert, inputs=[gr.File(label="Sube tu PDF", type="filepath")], outputs=[gr.Text(label="Markdown estructurado"), gr.JSON(label="Metadata")], ).launch()