Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,980 Bytes
d448add c243adb d448add db46bfb c243adb 3fe530b d448add db46bfb c243adb db46bfb d448add c243adb db46bfb 3fe530b d448add db46bfb c243adb db46bfb c243adb db46bfb c243adb db46bfb c243adb db46bfb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb db46bfb 3fe530b c243adb db46bfb c243adb db46bfb c243adb 3fe530b c243adb db46bfb 3fe530b c243adb db46bfb c243adb db46bfb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb db46bfb 3fe530b c243adb db46bfb c243adb 3fe530b db46bfb 3fe530b c243adb 3fe530b db46bfb c243adb db46bfb c243adb db46bfb 3fe530b db46bfb c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb 3fe530b d448add db46bfb c243adb db46bfb c243adb 3fe530b c243adb d448add c243adb db46bfb c243adb db46bfb c243adb db46bfb c243adb db46bfb c243adb 621eae6 d448add db46bfb c243adb db46bfb c243adb d448add db46bfb c243adb db46bfb c243adb db46bfb c243adb db46bfb c243adb d448add c243adb db46bfb c243adb db46bfb c243adb db46bfb c243adb 3fe530b c243adb db46bfb c243adb db46bfb c243adb 3fe530b c243adb d448add 3fe530b c243adb 3fe530b c243adb 3fe530b c243adb db46bfb d448add db46bfb 3fe530b c243adb 3fe530b db46bfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import streamlit as st
import requests
import torch
import scipy.io.wavfile
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration
)
from io import BytesIO
from streamlit_lottie import st_lottie # pip install streamlit-lottie
# ---------------------------------------------------------------------
# 1) PAGE CONFIG
# ---------------------------------------------------------------------
st.set_page_config(
page_title="Radio Imaging AI MVP",
page_icon="π§",
layout="wide"
)
# ---------------------------------------------------------------------
# 2) CUSTOM CSS / SPOTIFY-LIKE UI
# ---------------------------------------------------------------------
CUSTOM_CSS = """
<style>
/* Body styling for a dark, music-app vibe */
body {
background-color: #121212;
color: #FFFFFF;
font-family: "Helvetica Neue", sans-serif;
}
/* Main container width */
.block-container {
max-width: 1100px;
padding: 1rem 1.5rem;
}
/* Headings with a neon-ish green accent */
h1, h2, h3 {
color: #1DB954;
margin-bottom: 0.5rem;
}
/* Buttons: rounded, bright Spotify-like green on hover */
.stButton>button {
background-color: #1DB954 !important;
color: #FFFFFF !important;
border-radius: 24px;
border: none;
font-size: 16px !important;
padding: 0.6rem 1.2rem !important;
transition: background-color 0.3s ease;
}
.stButton>button:hover {
background-color: #1ed760 !important;
}
/* Sidebar: black background, white text */
.sidebar .sidebar-content {
background-color: #000000;
color: #FFFFFF;
}
/* Text inputs and text areas */
textarea, input, select {
border-radius: 8px !important;
background-color: #282828 !important;
color: #FFFFFF !important;
border: 1px solid #3e3e3e;
}
/* Audio player styling */
audio {
width: 100%;
margin-top: 1rem;
}
/* Lottie container styling */
.lottie-container {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
/* Footer styling */
.footer-note {
text-align: center;
font-size: 14px;
opacity: 0.7;
margin-top: 2rem;
}
/* Hide Streamlit's default branding if desired */
#MainMenu, footer {visibility: hidden;}
</style>
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
# ---------------------------------------------------------------------
# 3) HELPER: LOAD LOTTIE ANIMATION
# ---------------------------------------------------------------------
@st.cache_data
def load_lottie_url(url: str):
"""
Fetch Lottie JSON for animations.
"""
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
# Example Lottie animation (radio waves / music eq, etc.)
LOTTIE_URL = "https://assets3.lottiefiles.com/temp/lf20_Q6h5zV.json"
lottie_animation = load_lottie_url(LOTTIE_URL)
# ---------------------------------------------------------------------
# 4) SIDEBAR: "LIBRARY" NAVIGATION (MIMICS SPOTIFY)
# ---------------------------------------------------------------------
with st.sidebar:
st.header("π Radio Library")
st.write("**My Stations**")
st.write("- Favorites")
st.write("- Recently Generated")
st.write("- Top Hits")
st.write("---")
st.write("**Settings**")
st.markdown("<br>", unsafe_allow_html=True)
# ---------------------------------------------------------------------
# 5) HEADER SECTION WITH LOTS OF FLARE
# ---------------------------------------------------------------------
col1, col2 = st.columns([3, 2], gap="large")
with col1:
st.title("AI Radio Imaging MVP")
st.subheader("Llama-Driven Promo Scripts, MusicGen Audio")
st.markdown(
"""
Create **radio imaging promos** and **jingles** with a minimal but creative MVP.
This app:
- Uses a (hypothetical) [Llama 3] model for **script generation**.
- Uses Meta's [MusicGen](https://github.com/facebookresearch/audiocraft) for **audio**.
- Features a Spotify-like UI & Lottie animations for a modern user experience.
"""
)
with col2:
if lottie_animation:
with st.container():
st_lottie(lottie_animation, height=180, loop=True, key="radio_lottie")
else:
st.write("*No animation loaded.*")
st.markdown("---")
# ---------------------------------------------------------------------
# 6) PROMPT INPUT & MODEL SELECTION
# ---------------------------------------------------------------------
st.subheader("π Step 1: Briefly Describe Your Promo Idea")
prompt = st.text_area(
"E.g. 'A 15-second upbeat jingle with a catchy hook for a Top 40 morning show'",
height=120
)
col_model, col_device = st.columns(2)
with col_model:
llama_model_id = st.text_input(
"Llama Model (Hugging Face ID)",
value="meta-llama/Llama-3.3-70B-Instruct", # Replace with a real model
help="If non-existent, you'll see errors. Try Llama 2 (e.g. meta-llama/Llama-2-7b-chat-hf)."
)
with col_device:
device_option = st.selectbox(
"Choose Device",
["auto", "cpu"],
help="For GPU usage, pick 'auto'. CPU can be slow for big models."
)
# ---------------------------------------------------------------------
# 7) BUTTON: GENERATE RADIO SCRIPT WITH LLAMA
# ---------------------------------------------------------------------
if st.button("π Generate Promo Script"):
if not prompt.strip():
st.error("Please enter a radio imaging concept first.")
else:
with st.spinner("Generating script..."):
try:
# Load Llama pipeline
pipeline_llama = load_llama_pipeline(llama_model_id, device_option)
# Generate refined script
refined_text = generate_radio_script(prompt, pipeline_llama)
st.session_state["refined_script"] = refined_text
st.success("Promo script generated!")
st.write(refined_text)
except Exception as e:
st.error(f"Error during Llama generation: {e}")
st.markdown("---")
# ---------------------------------------------------------------------
# 8) AUDIO GENERATION: MUSICGEN
# ---------------------------------------------------------------------
st.subheader("πΆ Step 2: Generate Your Radio Audio")
audio_tokens = st.slider("MusicGen Max Tokens (Track Length)", 128, 1024, 512, 64)
if st.button("π§ Create Audio with MusicGen"):
# Check if we have a refined script
if "refined_script" not in st.session_state:
st.error("Please generate a promo script first.")
else:
with st.spinner("Generating audio..."):
try:
# Load MusicGen
mg_model, mg_processor = load_musicgen_model()
descriptive_text = st.session_state["refined_script"]
# Prepare model input
inputs = mg_processor(
text=[descriptive_text],
return_tensors="pt",
padding=True
)
# Generate audio
audio_values = mg_model.generate(**inputs, max_new_tokens=audio_tokens)
sr = mg_model.config.audio_encoder.sampling_rate
# Save audio to WAV
out_filename = "radio_imaging_output.wav"
scipy.io.wavfile.write(out_filename, rate=sr, data=audio_values[0,0].numpy())
st.success("Audio created! Press play to listen:")
st.audio(out_filename)
except Exception as e:
st.error(f"Error generating audio: {e}")
# ---------------------------------------------------------------------
# 9) HELPER FUNCTIONS
# ---------------------------------------------------------------------
@st.cache_resource
def load_llama_pipeline(model_id: str, device: str):
"""
Load the Llama model & pipeline.
"""
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16 if device == "auto" else torch.float32,
device_map=device
)
text_gen_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map=device
)
return text_gen_pipeline
def generate_radio_script(user_input: str, pipeline_llama) -> str:
"""
Use Llama to refine the user's input into a brief but creative radio imaging script.
"""
system_prompt = (
"You are a top-tier radio imaging producer. "
"Take the user's concept and craft a short, high-impact promo script. "
"Include style, tone, and potential CTA if relevant."
)
full_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
output = pipeline_llama(
full_prompt,
max_new_tokens=200,
do_sample=True,
temperature=0.9
)[0]["generated_text"]
# Attempt to isolate the final script portion
if "Refined script:" in output:
output = output.split("Refined script:", 1)[-1].strip()
output += "\n\n(Generated by Llama in Radio Imaging MVP)"
return output
@st.cache_resource
def load_musicgen_model():
"""
Load MusicGen (small version).
"""
mg_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
mg_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
return mg_model, mg_processor
# ---------------------------------------------------------------------
# 10) FOOTER
# ---------------------------------------------------------------------
st.markdown("---")
st.markdown(
"""
<div class="footer-note">
© 2025 Radio Imaging MVP – Built with Llama & MusicGen. <br>
Inspired by Spotify's UI for a sleek, modern experience.
</div>
""",
unsafe_allow_html=True
)
|