File size: 9,610 Bytes
d448add
c243adb
d448add
db46bfb
 
 
 
 
 
 
 
c243adb
d0384c8
d448add
e143767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db46bfb
c243adb
db46bfb
d448add
d0384c8
db46bfb
3fe530b
d448add
 
db46bfb
c243adb
db46bfb
c243adb
db46bfb
d0384c8
db46bfb
c243adb
 
 
db46bfb
3fe530b
 
 
c243adb
3fe530b
 
c243adb
d0384c8
c243adb
db46bfb
3fe530b
d0384c8
db46bfb
c243adb
db46bfb
c243adb
 
 
3fe530b
c243adb
 
 
 
db46bfb
3fe530b
d0384c8
db46bfb
c243adb
 
db46bfb
3fe530b
 
c243adb
 
 
 
3fe530b
 
d0384c8
c243adb
 
 
3fe530b
 
d0384c8
3fe530b
 
 
c243adb
db46bfb
3fe530b
d0384c8
db46bfb
 
 
c243adb
3fe530b
db46bfb
3fe530b
d0384c8
3fe530b
db46bfb
 
c243adb
db46bfb
 
d0384c8
db46bfb
3fe530b
 
 
 
 
 
 
c243adb
 
 
 
d0384c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c243adb
 
 
 
 
 
 
 
 
 
3fe530b
 
d0384c8
3fe530b
c243adb
 
 
d0384c8
 
3fe530b
 
 
d0384c8
 
 
c243adb
3fe530b
c243adb
 
3fe530b
c243adb
3fe530b
c243adb
3fe530b
d448add
 
db46bfb
d0384c8
db46bfb
d0384c8
3fe530b
c243adb
d0384c8
c243adb
 
d448add
c243adb
 
db46bfb
d0384c8
 
 
db46bfb
c243adb
db46bfb
d0384c8
db46bfb
d0384c8
621eae6
d448add
c243adb
 
d0384c8
c243adb
d0384c8
c243adb
d0384c8
 
 
c243adb
d0384c8
c243adb
d0384c8
c243adb
 
d448add
db46bfb
d0384c8
c243adb
d0384c8
c243adb
d0384c8
c243adb
 
d0384c8
 
c243adb
d0384c8
c243adb
 
d0384c8
 
c243adb
d0384c8
 
 
c243adb
d0384c8
c243adb
d448add
d0384c8
 
d448add
d0384c8
 
 
 
3fe530b
 
d0384c8
db46bfb
d448add
db46bfb
3fe530b
c243adb
d0384c8
 
3fe530b
 
db46bfb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import streamlit as st
import requests
import torch
import scipy.io.wavfile
from transformers import (
    AutoTokenizer, 
    AutoModelForCausalLM, 
    pipeline,
    AutoProcessor, 
    MusicgenForConditionalGeneration
)
from io import BytesIO
from streamlit_lottie import st_lottie


import os
from transformers import AutoTokenizer, AutoModelForCausalLM

my_token = os.getenv("HF_TOKEN")

tokenizer = AutoTokenizer.from_pretrained(
    "meta-llama/Llama-3-70B-Instruct", 
    use_auth_token=my_token
)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3-70B-Instruct",
    use_auth_token=my_token,
    torch_dtype=torch.float16,
    device_map="auto"
)

# ---------------------------------------------------------------------
# 1) PAGE CONFIG
# ---------------------------------------------------------------------
st.set_page_config(
    page_title="Radio Imaging AI with Llama 3",
    page_icon="🎧",
    layout="wide"
)

# ---------------------------------------------------------------------
# 2) CUSTOM CSS / SPOTIFY-LIKE UI
# ---------------------------------------------------------------------
CUSTOM_CSS = """
<style>
/* Dark background with Spotify-like vibe */
body {
    background-color: #121212;
    color: #FFFFFF;
    font-family: "Helvetica Neue", sans-serif;
}

.block-container {
    max-width: 1100px;
    padding: 1rem 1.5rem;
}

h1, h2, h3 {
    color: #1DB954;
    margin-bottom: 0.5rem;
}

/* Rounded, bright green button on hover */
.stButton>button {
    background-color: #1DB954 !important;
    color: #FFFFFF !important;
    border-radius: 24px;
    border: none;
    font-size: 16px !important;
    padding: 0.6rem 1.2rem !important;
    transition: background-color 0.3s ease;
}
.stButton>button:hover {
    background-color: #1ed760 !important;
}

/* Sidebar: black background */
.sidebar .sidebar-content {
    background-color: #000000;
    color: #FFFFFF;
}

textarea, input, select {
    border-radius: 8px !important;
    background-color: #282828 !important;
    color: #FFFFFF !important;
    border: 1px solid #3e3e3e;
}

/* Audio styling */
audio {
    width: 100%;
    margin-top: 1rem;
}

/* Lottie container */
.lottie-container {
    display: flex;
    justify-content: center;
    margin-bottom: 20px;
}

/* Footer */
.footer-note {
    text-align: center; 
    font-size: 14px; 
    opacity: 0.7;
    margin-top: 2rem;
}

/* Hide Streamlit branding if you wish */
#MainMenu, footer {visibility: hidden;}
</style>
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)

# ---------------------------------------------------------------------
# 3) LOAD LOTTIE ANIMATION
# ---------------------------------------------------------------------
@st.cache_data
def load_lottie_url(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

LOTTIE_URL = "https://assets3.lottiefiles.com/temp/lf20_Q6h5zV.json"
lottie_animation = load_lottie_url(LOTTIE_URL)

# ---------------------------------------------------------------------
# 4) LOAD LLAMA 3 (GATED MODEL) - WITH use_auth_token
# ---------------------------------------------------------------------
@st.cache_resource
def load_llama_pipeline(model_id: str, device: str):
    """
    Load the Llama 3 model from Hugging Face.
    Requires huggingface-cli login if model is gated.
    """
    tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=True)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16 if device == "auto" else torch.float32,
        device_map=device,
        use_auth_token=True
    )
    text_gen_pipeline = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        device_map=device
    )
    return text_gen_pipeline

# ---------------------------------------------------------------------
# 5) REFINE SCRIPT (LLAMA)
# ---------------------------------------------------------------------
def generate_radio_script(user_input: str, pipeline_llama) -> str:
    system_prompt = (
        "You are a top-tier radio imaging producer using Llama 3. "
        "Take the user's concept and craft a short, creative promo script."
    )
    combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"

    result = pipeline_llama(
        combined_prompt,
        max_new_tokens=200,
        do_sample=True,
        temperature=0.9
    )
    output_text = result[0]["generated_text"]

    if "Refined script:" in output_text:
        output_text = output_text.split("Refined script:", 1)[-1].strip()
    output_text += "\n\n(Generated by Llama 3 - Radio Imaging)"
    return output_text

# ---------------------------------------------------------------------
# 6) LOAD MUSICGEN
# ---------------------------------------------------------------------
@st.cache_resource
def load_musicgen_model():
    mg_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
    mg_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
    return mg_model, mg_processor

# ---------------------------------------------------------------------
# 7) SIDEBAR
# ---------------------------------------------------------------------
with st.sidebar:
    st.header("🎚 Radio Library")
    st.write("**My Stations**")
    st.write("- Favorites")
    st.write("- Recently Generated")
    st.write("- Top Hits")
    st.write("---")
    st.write("**Settings**")
    st.markdown("<br>", unsafe_allow_html=True)

# ---------------------------------------------------------------------
# 8) HEADER
# ---------------------------------------------------------------------
col1, col2 = st.columns([3, 2], gap="large")

with col1:
    st.title("AI Radio Imaging with Llama 3")
    st.subheader("Gated Model + MusicGen Audio")

    st.markdown(
        """
        Create **radio imaging promos** and **jingles** with Llama 3 + MusicGen.  
        **Note**: You must have access to `"meta-llama/Llama-3-70B-Instruct"` on Hugging Face, 
        and be logged in via `huggingface-cli login`.
        """
    )
with col2:
    if lottie_animation:
        with st.container():
            st_lottie(lottie_animation, height=180, loop=True, key="radio_lottie")
    else:
        st.write("*No animation loaded.*")

st.markdown("---")

# ---------------------------------------------------------------------
# 9) SCRIPT GENERATION
# ---------------------------------------------------------------------
st.subheader("πŸŽ™ Step 1: Describe Your Promo Idea")

prompt = st.text_area(
    "Example: 'A 15-second hype jingle for a morning talk show, fun and energetic.'",
    height=120
)

col_model, col_device = st.columns(2)
with col_model:
    llama_model_id = st.text_input(
        "Llama 3 Model ID",
        value="meta-llama/Llama-3-70B-Instruct",  # Official ID if you have it
        help="Use the exact name you see on the Hugging Face model page."
    )
with col_device:
    device_option = st.selectbox(
        "Device (GPU vs CPU)",
        ["auto", "cpu"],
        help="If you have GPU, 'auto' tries to use it; CPU might be slow."
    )

if st.button("πŸ“ Generate Promo Script"):
    if not prompt.strip():
        st.error("Please type some concept first.")
    else:
        with st.spinner("Generating script with Llama 3..."):
            try:
                llm_pipeline = load_llama_pipeline(llama_model_id, device_option)
                final_script = generate_radio_script(prompt, llm_pipeline)
                st.session_state["final_script"] = final_script
                st.success("Promo script generated!")
                st.write(final_script)
            except Exception as e:
                st.error(f"Llama generation error: {e}")

st.markdown("---")

# ---------------------------------------------------------------------
# 10) AUDIO GENERATION: MUSICGEN
# ---------------------------------------------------------------------
st.subheader("🎢 Step 2: Generate Audio")

audio_length = st.slider("MusicGen Max Tokens (approx track length)", 128, 1024, 512, 64)

if st.button("🎧 Create Audio with MusicGen"):
    if "final_script" not in st.session_state:
        st.error("No script found. Please generate a script first.")
    else:
        with st.spinner("Creating audio..."):
            try:
                mg_model, mg_processor = load_musicgen_model()
                text_for_audio = st.session_state["final_script"]

                inputs = mg_processor(
                    text=[text_for_audio],
                    padding=True,
                    return_tensors="pt"
                )
                audio_values = mg_model.generate(**inputs, max_new_tokens=audio_length)
                sr = mg_model.config.audio_encoder.sampling_rate

                outfile = "llama3_radio_jingle.wav"
                scipy.io.wavfile.write(outfile, rate=sr, data=audio_values[0, 0].numpy())

                st.success("Audio generated! Press play below:")
                st.audio(outfile)
            except Exception as e:
                st.error(f"MusicGen error: {e}")

# ---------------------------------------------------------------------
# 11) FOOTER
# ---------------------------------------------------------------------
st.markdown("---")
st.markdown(
    """
    <div class="footer-note">
    Β© 2025 Radio Imaging with Llama 3 – Built using Hugging Face & Streamlit. <br>
    Log in via <code>huggingface-cli</code> and ensure access to <strong>meta-llama/Llama-3-70B-Instruct</strong>.
    </div>
    """,
    unsafe_allow_html=True
)