AIPromoStudio / app.py
Bils's picture
Update app.py
6f08234 verified
raw
history blame
6 kB
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
import tempfile
from dotenv import load_dotenv
import spaces
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
# ---------------------------------------------------------------------
# Load Llama 3 Pipeline with Zero GPU (Encapsulated)
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_script(user_prompt: str, model_id: str, token: str):
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
"Take the user's concept and craft a concise, creative promo script with a strong focus on auditory elements and musical appeal."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:"
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
return result[0]["generated_text"].split("Refined script:")[-1].strip()
except Exception as e:
return f"Error generating script: {e}"
# ---------------------------------------------------------------------
# Load MusicGen Model (Encapsulated)
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_audio(prompt: str, audio_length: int):
try:
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
musicgen_model.to("cuda")
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
musicgen_model.to("cpu")
sr = musicgen_model.config.audio_encoder.sampling_rate
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_path = f"{tempfile.gettempdir()}/generated_audio.wav"
write(output_path, sr, normalized_audio)
return output_path
except Exception as e:
return f"Error generating audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface Functions
# ---------------------------------------------------------------------
def interface_generate_script(user_prompt, llama_model_id):
return generate_script(user_prompt, llama_model_id, hf_token)
def interface_generate_audio(script, audio_length):
return generate_audio(script, audio_length)
# ---------------------------------------------------------------------
# Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
# Header
gr.Markdown("""
# πŸŽ™οΈ AI-Powered Radio Imaging Studio πŸš€
### Create stunning **radio promos** with **Llama 3** and **MusicGen**
πŸ”₯ **Zero GPU** integration for efficiency and ease!
❀️ A huge thanks to the **Hugging Face community** for making this possible.
""")
# Script Generation Section
gr.Markdown("## ✍️ Step 1: Generate Your Promo Script")
with gr.Row():
user_prompt = gr.Textbox(
label="🎀 Enter Promo Idea",
placeholder="E.g., A 15-second energetic jingle for a morning talk show.",
lines=2,
info="Describe your promo idea clearly to generate a creative script."
)
llama_model_id = gr.Textbox(
label="πŸŽ›οΈ Llama 3 Model ID",
value="meta-llama/Meta-Llama-3-8B-Instruct",
info="Enter the Hugging Face model ID for Llama 3."
)
generate_script_button = gr.Button("Generate Script ✨")
script_output = gr.Textbox(
label="πŸ“œ Generated Promo Script",
lines=4,
interactive=False,
info="Your generated promo script will appear here."
)
# Audio Generation Section
gr.Markdown("## 🎧 Step 2: Generate Audio from Your Script")
with gr.Row():
audio_length = gr.Slider(
label="🎡 Audio Length (tokens)",
minimum=128,
maximum=1024,
step=64,
value=512,
info="Select the desired audio token length."
)
generate_audio_button = gr.Button("Generate Audio 🎢")
audio_output = gr.Audio(
label="🎢 Generated Audio File",
type="filepath",
interactive=False
)
# Footer
gr.Markdown("""
<br><hr>
<p style="text-align: center; font-size: 0.9em;">
Created with ❀️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
Special thanks to the <strong>Hugging Face community</strong> for their incredible support and tools!
</p>
""", elem_id="footer")
# Button Actions
generate_script_button.click(
fn=interface_generate_script,
inputs=[user_prompt, llama_model_id],
outputs=script_output,
)
generate_audio_button.click(
fn=interface_generate_audio,
inputs=[script_output, audio_length],
outputs=audio_output,
)
# ---------------------------------------------------------------------
# Launch App
# ---------------------------------------------------------------------
demo.launch(debug=True)