AIPromoStudio / app.py
Bils's picture
Update app.py
f2c044d verified
raw
history blame
18.2 kB
import os
import uuid
import torch
import numpy as np
import gradio as gr
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS
# -----------------------------------------------------------
# Initialization & Environment Setup
# -----------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# -----------------------------------------------------------
# Model Cache Management
# -----------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}
def get_llama_pipeline(model_id: str, token: str):
"""Load and cache the LLaMA text-generation pipeline."""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
"""Load and cache the MusicGen model and processor."""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""Load and cache the TTS model."""
if model_name in TTS_MODELS:
return TTS_MODELS[model_name]
tts_model = TTS(model_name)
TTS_MODELS[model_name] = tts_model
return tts_model
# -----------------------------------------------------------
# Core Functionality
# -----------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
"""
Generate a professional promo script including a voice-over script,
sound design suggestions, and music recommendations.
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
# Updated prompt to instruct the model to output sections with explicit headers.
system_prompt = (
f"You are a professional audio producer creating {duration}-second content. "
"Please generate the following three sections exactly as shown:\n\n"
"Voice-Over Script: [A clear and concise script for the voiceover.]\n"
"Sound Design Suggestions: [Specific ideas, effects, and ambience recommendations.]\n"
"Music Suggestions: [Recommendations for music style, genre, and tempo.]\n\n"
"Make sure each section starts with its header exactly."
)
full_prompt = f"{system_prompt}\nClient brief: {user_prompt}\nOutput:"
with torch.inference_mode():
result = text_pipeline(
full_prompt,
max_new_tokens=400,
do_sample=True,
temperature=0.7,
top_p=0.9
)
generated_text = result[0]["generated_text"].split("Output:")[-1].strip()
# Parse the output into the three expected sections.
sections = {
"Voice-Over Script:": "",
"Sound Design Suggestions:": "",
"Music Suggestions:": ""
}
current_section = None
for line in generated_text.split('\n'):
for section in sections:
if section in line:
current_section = section
# Remove header from the line.
line = line.replace(section, '').strip()
break
if current_section:
sections[current_section] += line + '\n'
return (
sections["Voice-Over Script:"].strip() or "No script generated",
sections["Sound Design Suggestions:"].strip() or "No sound design suggestions",
sections["Music Suggestions:"].strip() or "No music suggestions"
)
except Exception as e:
return f"Error: {str(e)}", "", ""
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str):
"""
Generate full voice-over audio from the provided script using a TTS model.
"""
try:
if not script.strip():
return None
tts_model = get_tts_model(tts_model_name)
# Create a unique temporary file name for the output.
output_path = os.path.join(tempfile.gettempdir(), f"voice_{uuid.uuid4().hex}.wav")
tts_model.tts_to_file(text=script, file_path=output_path)
return output_path
except Exception as e:
print(f"Voice generation error: {e}")
return None
@spaces.GPU(duration=100)
def generate_voice_preview(script: str, tts_model_name: str):
"""
Generate a short preview of the voice-over by taking the first 100 words.
"""
try:
if not script.strip():
return None
words = script.split()
preview_text = ' '.join(words[:100]) if len(words) > 100 else script
return generate_voice(preview_text, tts_model_name)
except Exception as e:
print(f"Voice preview error: {e}")
return None
@spaces.GPU(duration=100)
def generate_music(prompt: str, audio_length: int):
"""
Generate music audio from a text prompt using the MusicGen model.
"""
try:
model, processor = get_musicgen_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor(text=[prompt], padding=True, return_tensors="pt").to(device)
with torch.inference_mode():
outputs = model.generate(**inputs, max_new_tokens=audio_length)
# Assuming outputs[0, 0] holds the generated audio waveform.
audio_data = outputs[0, 0].cpu().numpy()
# Prevent division by zero during normalization.
max_val = np.max(np.abs(audio_data))
if max_val == 0:
normalized_audio = audio_data.astype("int16")
else:
normalized_audio = (audio_data / max_val * 32767).astype("int16")
output_path = os.path.join(tempfile.gettempdir(), f"music_{uuid.uuid4().hex}.wav")
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
print(f"Music generation error: {e}")
return None
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int):
"""
Blend the generated voice and music audio files.
If ducking is enabled, lower the music volume during the voice segments.
"""
try:
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
# Loop the music track if it's shorter than the voice track.
if len(music) < len(voice):
loops_needed = (len(voice) // len(music)) + 1
music = music * loops_needed
music = music[:len(voice)]
if ducking:
ducked_music = music - duck_level
final_audio = ducked_music.overlay(voice)
else:
final_audio = music.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), f"final_mix_{uuid.uuid4().hex}.wav")
final_audio.export(output_path, format="wav")
return output_path
except Exception as e:
print(f"Mixing error: {e}")
return None
# -----------------------------------------------------------
# Enhanced UI Components
# -----------------------------------------------------------
custom_css = """
#main-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background: #f0f9fb;
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
}
.header {
text-align: center;
padding: 2em;
background: linear-gradient(135deg, #2a9d8f 0%, #457b9d 100%);
color: white;
border-radius: 15px;
margin-bottom: 2em;
border: 1px solid #264653;
}
.tab-nav {
background: none !important;
border: none !important;
}
.tab-button {
padding: 1em 2em !important;
border-radius: 8px !important;
margin: 0 5px !important;
transition: all 0.3s ease !important;
background: #e9f5f4 !important;
border: 1px solid #a8dadc !important;
color: #1d3557 !important;
}
.tab-button:hover {
transform: translateY(-2px);
box-shadow: 0 3px 6px rgba(42,157,143,0.2);
background: #caf0f8 !important;
}
.dark-btn {
background: linear-gradient(135deg, #457b9d 0%, #2a9d8f 100%) !important;
color: white !important;
border: none !important;
padding: 12px 24px !important;
border-radius: 8px !important;
transition: transform 0.2s ease !important;
}
.dark-btn:hover {
transform: scale(1.02);
box-shadow: 0 3px 8px rgba(42,157,143,0.3);
}
.output-card {
background: #f8fbfe !important;
border-radius: 10px !important;
padding: 20px !important;
box-shadow: 0 2px 4px rgba(69,123,157,0.1) !important;
border: 1px solid #e2e8f0;
}
.progress-indicator {
color: #457b9d;
font-style: italic;
margin-top: 10px;
}
/* Additional Color Elements */
h1, h2, h3 {
color: #1d3557 !important;
}
audio {
border: 1px solid #a8dadc !important;
border-radius: 8px !important;
}
.slider-handle {
background: #2a9d8f !important;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
with gr.Column(elem_id="main-container"):
# Header Section
with gr.Column(elem_classes="header"):
gr.Markdown("""
# πŸŽ™οΈ AI Promo Studio
**Professional Audio Production Suite Powered by AI**
""")
# Main Workflow Tabs
with gr.Tabs(elem_classes="tab-nav"):
# Script Generation Tab
with gr.Tab("πŸ“ Script Design", elem_classes="tab-button"):
with gr.Row(equal_height=False):
with gr.Column(scale=2):
gr.Markdown("### 🎯 Project Brief")
user_prompt = gr.Textbox(
label="Describe your promo concept",
placeholder="e.g., 'An intense 30-second movie trailer intro with epic orchestral music and dramatic sound effects...'",
lines=4
)
with gr.Row():
duration = gr.Slider(
label="Duration (seconds)",
minimum=15,
maximum=120,
step=15,
value=30,
interactive=True
)
llama_model_id = gr.Dropdown(
label="AI Model",
choices=["meta-llama/Meta-Llama-3-8B-Instruct"],
value="meta-llama/Meta-Llama-3-8B-Instruct",
interactive=True
)
generate_btn = gr.Button("Generate Script πŸš€", elem_classes="dark-btn")
with gr.Column(scale=1, elem_classes="output-card"):
gr.Markdown("### πŸ“„ Generated Content")
script_output = gr.Textbox(label="Voice Script", lines=6)
sound_design_output = gr.Textbox(label="Sound Design", lines=3)
music_suggestion_output = gr.Textbox(label="Music Style", lines=3)
# Voice Production Tab
with gr.Tab("πŸŽ™οΈ Voice Production", elem_classes="tab-button"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ”Š Voice Settings")
tts_model = gr.Dropdown(
label="Voice Model",
choices=[
"tts_models/en/ljspeech/tacotron2-DDC",
"tts_models/en/ljspeech/vits",
"tts_models/en/sam/tacotron-DDC"
],
value="tts_models/en/ljspeech/tacotron2-DDC",
interactive=True
)
with gr.Row():
voice_preview_btn = gr.Button("Preview Sample", elem_classes="dark-btn")
voice_generate_btn = gr.Button("Generate Full Voiceover", elem_classes="dark-btn")
with gr.Column(scale=1, elem_classes="output-card"):
gr.Markdown("### 🎧 Voice Preview")
voice_audio = gr.Audio(
label="Generated Voice",
interactive=False,
waveform_options={"show_controls": True}
)
# Music Production Tab
with gr.Tab("🎡 Music Design", elem_classes="tab-button"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🎹 Music Parameters")
audio_length = gr.Slider(
label="Generation Length",
minimum=256,
maximum=1024,
step=64,
value=512,
info="Higher values = longer generation time"
)
music_generate_btn = gr.Button("Generate Music Track", elem_classes="dark-btn")
with gr.Column(scale=1, elem_classes="output-card"):
gr.Markdown("### 🎢 Music Preview")
music_output = gr.Audio(
label="Generated Music",
interactive=False,
waveform_options={"show_controls": True}
)
# Final Mix Tab
with gr.Tab("πŸ”Š Final Mix", elem_classes="tab-button"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🎚️ Mixing Console")
ducking_enabled = gr.Checkbox(
label="Enable Voice Ducking",
value=True,
info="Automatically lower music during voice segments"
)
duck_level = gr.Slider(
label="Ducking Intensity (dB)",
minimum=3,
maximum=20,
step=1,
value=10
)
mix_btn = gr.Button("Generate Final Mix", elem_classes="dark-btn")
with gr.Column(scale=1, elem_classes="output-card"):
gr.Markdown("### 🎧 Final Production")
final_mix = gr.Audio(
label="Mixed Output",
interactive=False,
waveform_options={"show_controls": True}
)
# Footer Section
with gr.Column(elem_classes="output-card"):
gr.Markdown("""
<div style="text-align: center; padding: 1.5em 0;">
<a href="https://bilsimaging.com" target="_blank">
<img src="https://bilsimaging.com/logo.png" alt="Bils Imaging" style="height: 35px; margin-right: 15px;">
</a>
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
</a>
</div>
<p style="text-align: center; color: #666; font-size: 0.9em;">
Professional Audio Production Suite v2.1 Β© 2024 | Bils Imaging
</p>
""")
# -----------------------------------------------------------
# Event Handling
# -----------------------------------------------------------
# Hidden textbox for HF_TOKEN (its value is set via the environment variable).
hf_token_hidden = gr.Textbox(value=HF_TOKEN, visible=False)
generate_btn.click(
generate_script,
inputs=[user_prompt, llama_model_id, hf_token_hidden, duration],
outputs=[script_output, sound_design_output, music_suggestion_output]
)
# Voice preview: generates a trimmed version of the script.
voice_preview_btn.click(
generate_voice_preview,
inputs=[script_output, tts_model],
outputs=voice_audio
)
# Full voice generation using the complete script.
voice_generate_btn.click(
generate_voice,
inputs=[script_output, tts_model],
outputs=voice_audio
)
music_generate_btn.click(
generate_music,
inputs=[music_suggestion_output, audio_length],
outputs=music_output
)
mix_btn.click(
blend_audio,
inputs=[voice_audio, music_output, ducking_enabled, duck_level],
outputs=final_mix
)
if __name__ == "__main__":
demo.launch(debug=True)