Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -50,7 +50,6 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
50 |
"""
|
51 |
if model_id in LLAMA_PIPELINES:
|
52 |
return LLAMA_PIPELINES[model_id]
|
53 |
-
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
model_id,
|
@@ -63,7 +62,6 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
63 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
64 |
return text_pipeline
|
65 |
|
66 |
-
|
67 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
68 |
"""
|
69 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
@@ -71,7 +69,6 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
71 |
"""
|
72 |
if model_key in MUSICGEN_MODELS:
|
73 |
return MUSICGEN_MODELS[model_key]
|
74 |
-
|
75 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
76 |
processor = AutoProcessor.from_pretrained(model_key)
|
77 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -79,19 +76,16 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
79 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
80 |
return model, processor
|
81 |
|
82 |
-
|
83 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
84 |
"""
|
85 |
Returns a cached TTS model if available; otherwise, loads it.
|
86 |
"""
|
87 |
if model_name in TTS_MODELS:
|
88 |
return TTS_MODELS[model_name]
|
89 |
-
|
90 |
tts_model = TTS(model_name)
|
91 |
TTS_MODELS[model_name] = tts_model
|
92 |
return tts_model
|
93 |
|
94 |
-
|
95 |
# ---------------------------------------------------------------------
|
96 |
# Script Generation Function
|
97 |
# ---------------------------------------------------------------------
|
@@ -125,7 +119,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
125 |
voice_script = "No voice-over script found."
|
126 |
sound_design = "No sound design suggestions found."
|
127 |
music_suggestions = "No music suggestions found."
|
128 |
-
#
|
129 |
if "Voice-Over Script:" in generated_text:
|
130 |
parts = generated_text.split("Voice-Over Script:")
|
131 |
voice_script_part = parts[1]
|
@@ -133,7 +127,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
133 |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
134 |
else:
|
135 |
voice_script = voice_script_part.strip()
|
136 |
-
# Sound Design
|
137 |
if "Sound Design Suggestions:" in generated_text:
|
138 |
parts = generated_text.split("Sound Design Suggestions:")
|
139 |
sound_design_part = parts[1]
|
@@ -141,7 +134,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
141 |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
142 |
else:
|
143 |
sound_design = sound_design_part.strip()
|
144 |
-
# Music Suggestions
|
145 |
if "Music Suggestions:" in generated_text:
|
146 |
parts = generated_text.split("Music Suggestions:")
|
147 |
music_suggestions = parts[1].strip()
|
@@ -149,7 +141,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
149 |
except Exception as e:
|
150 |
return f"Error generating script: {e}", "", ""
|
151 |
|
152 |
-
|
153 |
# ---------------------------------------------------------------------
|
154 |
# Ad Promo Idea Generation Function
|
155 |
# ---------------------------------------------------------------------
|
@@ -181,7 +172,6 @@ def generate_ad_promo_idea(user_prompt: str, model_id: str, token: str):
|
|
181 |
except Exception as e:
|
182 |
return f"Error generating ad promo idea: {e}"
|
183 |
|
184 |
-
|
185 |
# ---------------------------------------------------------------------
|
186 |
# Voice-Over Generation Function
|
187 |
# ---------------------------------------------------------------------
|
@@ -202,7 +192,6 @@ def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/ta
|
|
202 |
except Exception as e:
|
203 |
return f"Error generating voice: {e}"
|
204 |
|
205 |
-
|
206 |
# ---------------------------------------------------------------------
|
207 |
# Music Generation Function
|
208 |
# ---------------------------------------------------------------------
|
@@ -229,7 +218,6 @@ def generate_music(prompt: str, audio_length: int):
|
|
229 |
except Exception as e:
|
230 |
return f"Error generating music: {e}"
|
231 |
|
232 |
-
|
233 |
# ---------------------------------------------------------------------
|
234 |
# Audio Blending with Duration Sync & Ducking
|
235 |
# ---------------------------------------------------------------------
|
@@ -264,7 +252,6 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
264 |
except Exception as e:
|
265 |
return f"Error blending audio: {e}"
|
266 |
|
267 |
-
|
268 |
# ---------------------------------------------------------------------
|
269 |
# Gradio Interface with Enhanced UI
|
270 |
# ---------------------------------------------------------------------
|
@@ -284,19 +271,23 @@ with gr.Blocks(css="""
|
|
284 |
}
|
285 |
.header h1 {
|
286 |
margin: 0;
|
287 |
-
font-size: 2.
|
288 |
}
|
289 |
.header p {
|
290 |
font-size: 1.2rem;
|
291 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
.gradio-container {
|
293 |
background: #2e2e2e;
|
294 |
border-radius: 10px;
|
295 |
padding: 1rem;
|
296 |
-
|
297 |
-
.tab-title {
|
298 |
-
font-size: 1.1rem;
|
299 |
-
font-weight: bold;
|
300 |
}
|
301 |
.footer {
|
302 |
text-align: center;
|
@@ -305,6 +296,11 @@ with gr.Blocks(css="""
|
|
305 |
padding: 1rem;
|
306 |
color: #cccccc;
|
307 |
}
|
|
|
|
|
|
|
|
|
|
|
308 |
""") as demo:
|
309 |
|
310 |
# Custom Header
|
@@ -315,22 +311,23 @@ with gr.Blocks(css="""
|
|
315 |
""")
|
316 |
|
317 |
gr.Markdown("""
|
318 |
-
Welcome to **AI Ads Promo (Demo MVP)**! This platform leverages state-of-the-art AI models to help you generate
|
319 |
-
|
320 |
-
- **Ad Promo Ideas
|
321 |
-
- **
|
322 |
-
- **
|
323 |
-
- **Music
|
324 |
-
- **Audio
|
325 |
""")
|
326 |
|
327 |
with gr.Tabs():
|
328 |
-
#
|
329 |
with gr.Tab("💡 Ad Promo Idea"):
|
|
|
330 |
with gr.Row():
|
331 |
ad_concept = gr.Textbox(
|
332 |
label="Ad Concept",
|
333 |
-
placeholder="
|
334 |
lines=2
|
335 |
)
|
336 |
with gr.Row():
|
@@ -339,20 +336,24 @@ with gr.Blocks(css="""
|
|
339 |
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
340 |
placeholder="Enter a valid Hugging Face model ID"
|
341 |
)
|
342 |
-
|
|
|
|
|
343 |
ad_idea_output = gr.Textbox(label="Generated Ad Promo Idea", lines=5, interactive=False)
|
344 |
generate_ad_idea_button.click(
|
345 |
fn=lambda concept, model_id: generate_ad_promo_idea(concept, model_id, HF_TOKEN),
|
346 |
inputs=[ad_concept, llama_model_id_idea],
|
347 |
outputs=ad_idea_output
|
348 |
)
|
|
|
349 |
|
350 |
-
#
|
351 |
with gr.Tab("📝 Script Generation"):
|
|
|
352 |
with gr.Row():
|
353 |
user_prompt = gr.Textbox(
|
354 |
label="Promo Idea",
|
355 |
-
placeholder="E.g., A 30-second promo for a
|
356 |
lines=2
|
357 |
)
|
358 |
with gr.Row():
|
@@ -368,19 +369,22 @@ with gr.Blocks(css="""
|
|
368 |
step=15,
|
369 |
value=30
|
370 |
)
|
371 |
-
|
372 |
-
|
|
|
|
|
373 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
374 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
375 |
generate_script_button.click(
|
376 |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
377 |
inputs=[user_prompt, llama_model_id, duration],
|
378 |
-
outputs=[script_output, sound_design_output, music_suggestion_output]
|
379 |
)
|
|
|
380 |
|
381 |
-
#
|
382 |
with gr.Tab("🎤 Voice Synthesis"):
|
383 |
-
gr.Markdown("
|
384 |
selected_tts_model = gr.Dropdown(
|
385 |
label="TTS Model",
|
386 |
choices=[
|
@@ -391,17 +395,19 @@ with gr.Blocks(css="""
|
|
391 |
value="tts_models/en/ljspeech/tacotron2-DDC",
|
392 |
multiselect=False
|
393 |
)
|
394 |
-
|
|
|
|
|
395 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
396 |
generate_voice_button.click(
|
397 |
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
398 |
-
inputs=
|
399 |
-
outputs=voice_audio_output,
|
400 |
)
|
|
|
401 |
|
402 |
-
#
|
403 |
with gr.Tab("🎶 Music Production"):
|
404 |
-
gr.Markdown("Generate a custom music track using the
|
405 |
audio_length = gr.Slider(
|
406 |
label="Music Length (tokens)",
|
407 |
minimum=128,
|
@@ -410,17 +416,20 @@ with gr.Blocks(css="""
|
|
410 |
value=512,
|
411 |
info="Increase tokens for longer audio (inference time may vary)."
|
412 |
)
|
413 |
-
|
|
|
|
|
414 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
415 |
generate_music_button.click(
|
416 |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
417 |
inputs=[music_suggestion_output, audio_length],
|
418 |
-
outputs=[music_output]
|
419 |
)
|
|
|
420 |
|
421 |
-
#
|
422 |
with gr.Tab("🎚️ Audio Blending"):
|
423 |
-
gr.Markdown("Blend your voice-over and music track. Music will be
|
424 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
425 |
duck_level_slider = gr.Slider(
|
426 |
label="Ducking Level (dB attenuation)",
|
@@ -429,13 +438,16 @@ with gr.Blocks(css="""
|
|
429 |
step=1,
|
430 |
value=10
|
431 |
)
|
432 |
-
|
|
|
|
|
433 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
434 |
blend_button.click(
|
435 |
fn=blend_audio,
|
436 |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
437 |
outputs=blended_output
|
438 |
)
|
|
|
439 |
|
440 |
# Footer
|
441 |
gr.Markdown("""
|
@@ -447,7 +459,6 @@ with gr.Blocks(css="""
|
|
447 |
</div>
|
448 |
""")
|
449 |
|
450 |
-
# Visitor Badge
|
451 |
gr.HTML("""
|
452 |
<div style="text-align: center; margin-top: 1rem;">
|
453 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
|
|
50 |
"""
|
51 |
if model_id in LLAMA_PIPELINES:
|
52 |
return LLAMA_PIPELINES[model_id]
|
|
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
55 |
model_id,
|
|
|
62 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
63 |
return text_pipeline
|
64 |
|
|
|
65 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
66 |
"""
|
67 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
|
69 |
"""
|
70 |
if model_key in MUSICGEN_MODELS:
|
71 |
return MUSICGEN_MODELS[model_key]
|
|
|
72 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
73 |
processor = AutoProcessor.from_pretrained(model_key)
|
74 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
76 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
77 |
return model, processor
|
78 |
|
|
|
79 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
80 |
"""
|
81 |
Returns a cached TTS model if available; otherwise, loads it.
|
82 |
"""
|
83 |
if model_name in TTS_MODELS:
|
84 |
return TTS_MODELS[model_name]
|
|
|
85 |
tts_model = TTS(model_name)
|
86 |
TTS_MODELS[model_name] = tts_model
|
87 |
return tts_model
|
88 |
|
|
|
89 |
# ---------------------------------------------------------------------
|
90 |
# Script Generation Function
|
91 |
# ---------------------------------------------------------------------
|
|
|
119 |
voice_script = "No voice-over script found."
|
120 |
sound_design = "No sound design suggestions found."
|
121 |
music_suggestions = "No music suggestions found."
|
122 |
+
# Extract sections if present
|
123 |
if "Voice-Over Script:" in generated_text:
|
124 |
parts = generated_text.split("Voice-Over Script:")
|
125 |
voice_script_part = parts[1]
|
|
|
127 |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
128 |
else:
|
129 |
voice_script = voice_script_part.strip()
|
|
|
130 |
if "Sound Design Suggestions:" in generated_text:
|
131 |
parts = generated_text.split("Sound Design Suggestions:")
|
132 |
sound_design_part = parts[1]
|
|
|
134 |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
135 |
else:
|
136 |
sound_design = sound_design_part.strip()
|
|
|
137 |
if "Music Suggestions:" in generated_text:
|
138 |
parts = generated_text.split("Music Suggestions:")
|
139 |
music_suggestions = parts[1].strip()
|
|
|
141 |
except Exception as e:
|
142 |
return f"Error generating script: {e}", "", ""
|
143 |
|
|
|
144 |
# ---------------------------------------------------------------------
|
145 |
# Ad Promo Idea Generation Function
|
146 |
# ---------------------------------------------------------------------
|
|
|
172 |
except Exception as e:
|
173 |
return f"Error generating ad promo idea: {e}"
|
174 |
|
|
|
175 |
# ---------------------------------------------------------------------
|
176 |
# Voice-Over Generation Function
|
177 |
# ---------------------------------------------------------------------
|
|
|
192 |
except Exception as e:
|
193 |
return f"Error generating voice: {e}"
|
194 |
|
|
|
195 |
# ---------------------------------------------------------------------
|
196 |
# Music Generation Function
|
197 |
# ---------------------------------------------------------------------
|
|
|
218 |
except Exception as e:
|
219 |
return f"Error generating music: {e}"
|
220 |
|
|
|
221 |
# ---------------------------------------------------------------------
|
222 |
# Audio Blending with Duration Sync & Ducking
|
223 |
# ---------------------------------------------------------------------
|
|
|
252 |
except Exception as e:
|
253 |
return f"Error blending audio: {e}"
|
254 |
|
|
|
255 |
# ---------------------------------------------------------------------
|
256 |
# Gradio Interface with Enhanced UI
|
257 |
# ---------------------------------------------------------------------
|
|
|
271 |
}
|
272 |
.header h1 {
|
273 |
margin: 0;
|
274 |
+
font-size: 2.8rem;
|
275 |
}
|
276 |
.header p {
|
277 |
font-size: 1.2rem;
|
278 |
}
|
279 |
+
.instructions {
|
280 |
+
background-color: #2e2e2e;
|
281 |
+
border-radius: 8px;
|
282 |
+
padding: 1rem;
|
283 |
+
margin-bottom: 1rem;
|
284 |
+
font-size: 0.95rem;
|
285 |
+
}
|
286 |
.gradio-container {
|
287 |
background: #2e2e2e;
|
288 |
border-radius: 10px;
|
289 |
padding: 1rem;
|
290 |
+
margin-bottom: 1rem;
|
|
|
|
|
|
|
291 |
}
|
292 |
.footer {
|
293 |
text-align: center;
|
|
|
296 |
padding: 1rem;
|
297 |
color: #cccccc;
|
298 |
}
|
299 |
+
.btn-clear {
|
300 |
+
margin-left: 1rem;
|
301 |
+
background: #ff5555;
|
302 |
+
color: #fff;
|
303 |
+
}
|
304 |
""") as demo:
|
305 |
|
306 |
# Custom Header
|
|
|
311 |
""")
|
312 |
|
313 |
gr.Markdown("""
|
314 |
+
Welcome to **AI Ads Promo (Demo MVP)**! This platform leverages state-of-the-art AI models to help you generate creative advertising content.
|
315 |
+
Use the tabs below to generate:
|
316 |
+
- **Ad Promo Ideas**
|
317 |
+
- **Voice-Over Scripts**
|
318 |
+
- **Natural-Sounding Voice-Overs**
|
319 |
+
- **Custom Music Tracks**
|
320 |
+
- **Blended Audio Ads**
|
321 |
""")
|
322 |
|
323 |
with gr.Tabs():
|
324 |
+
# Tab 1: Ad Promo Idea Generation
|
325 |
with gr.Tab("💡 Ad Promo Idea"):
|
326 |
+
gr.Markdown("Enter a concept for your ad and let the system generate a creative ad promo idea with taglines and media suggestions.")
|
327 |
with gr.Row():
|
328 |
ad_concept = gr.Textbox(
|
329 |
label="Ad Concept",
|
330 |
+
placeholder="E.g., A vibrant summer sale for a trendy clothing brand...",
|
331 |
lines=2
|
332 |
)
|
333 |
with gr.Row():
|
|
|
336 |
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
337 |
placeholder="Enter a valid Hugging Face model ID"
|
338 |
)
|
339 |
+
with gr.Row():
|
340 |
+
generate_ad_idea_button = gr.Button("Generate Ad Promo Idea", variant="primary")
|
341 |
+
clear_ad_idea = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
342 |
ad_idea_output = gr.Textbox(label="Generated Ad Promo Idea", lines=5, interactive=False)
|
343 |
generate_ad_idea_button.click(
|
344 |
fn=lambda concept, model_id: generate_ad_promo_idea(concept, model_id, HF_TOKEN),
|
345 |
inputs=[ad_concept, llama_model_id_idea],
|
346 |
outputs=ad_idea_output
|
347 |
)
|
348 |
+
clear_ad_idea.click(fn=lambda: "", inputs=None, outputs=ad_idea_output)
|
349 |
|
350 |
+
# Tab 2: Script Generation
|
351 |
with gr.Tab("📝 Script Generation"):
|
352 |
+
gr.Markdown("Generate a voice-over script along with sound design and music suggestions based on your promo idea.")
|
353 |
with gr.Row():
|
354 |
user_prompt = gr.Textbox(
|
355 |
label="Promo Idea",
|
356 |
+
placeholder="E.g., A 30-second energetic promo for a new product launch...",
|
357 |
lines=2
|
358 |
)
|
359 |
with gr.Row():
|
|
|
369 |
step=15,
|
370 |
value=30
|
371 |
)
|
372 |
+
with gr.Row():
|
373 |
+
generate_script_button = gr.Button("Generate Script", variant="primary")
|
374 |
+
clear_script = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
375 |
+
script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
|
376 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
377 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
378 |
generate_script_button.click(
|
379 |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
380 |
inputs=[user_prompt, llama_model_id, duration],
|
381 |
+
outputs=[script_output, sound_design_output, music_suggestion_output]
|
382 |
)
|
383 |
+
clear_script.click(fn=lambda: ["", "", ""], inputs=None, outputs=[script_output, sound_design_output, music_suggestion_output])
|
384 |
|
385 |
+
# Tab 3: Voice Synthesis
|
386 |
with gr.Tab("🎤 Voice Synthesis"):
|
387 |
+
gr.Markdown("Convert your generated script into a natural-sounding voice-over using Coqui TTS.")
|
388 |
selected_tts_model = gr.Dropdown(
|
389 |
label="TTS Model",
|
390 |
choices=[
|
|
|
395 |
value="tts_models/en/ljspeech/tacotron2-DDC",
|
396 |
multiselect=False
|
397 |
)
|
398 |
+
with gr.Row():
|
399 |
+
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
400 |
+
clear_voice = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
401 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
402 |
generate_voice_button.click(
|
403 |
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
404 |
+
inputs=script_output, outputs=voice_audio_output
|
|
|
405 |
)
|
406 |
+
clear_voice.click(fn=lambda: "", inputs=None, outputs=voice_audio_output)
|
407 |
|
408 |
+
# Tab 4: Music Production
|
409 |
with gr.Tab("🎶 Music Production"):
|
410 |
+
gr.Markdown("Generate a custom music track based on the suggestions using the MusicGen model.")
|
411 |
audio_length = gr.Slider(
|
412 |
label="Music Length (tokens)",
|
413 |
minimum=128,
|
|
|
416 |
value=512,
|
417 |
info="Increase tokens for longer audio (inference time may vary)."
|
418 |
)
|
419 |
+
with gr.Row():
|
420 |
+
generate_music_button = gr.Button("Generate Music", variant="primary")
|
421 |
+
clear_music = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
422 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
423 |
generate_music_button.click(
|
424 |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
425 |
inputs=[music_suggestion_output, audio_length],
|
426 |
+
outputs=[music_output]
|
427 |
)
|
428 |
+
clear_music.click(fn=lambda: "", inputs=None, outputs=music_output)
|
429 |
|
430 |
+
# Tab 5: Audio Blending
|
431 |
with gr.Tab("🎚️ Audio Blending"):
|
432 |
+
gr.Markdown("Blend your voice-over and music track. Music will be adjusted to match the voice duration with an option to enable ducking.")
|
433 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
434 |
duck_level_slider = gr.Slider(
|
435 |
label="Ducking Level (dB attenuation)",
|
|
|
438 |
step=1,
|
439 |
value=10
|
440 |
)
|
441 |
+
with gr.Row():
|
442 |
+
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
443 |
+
clear_blend = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
444 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
445 |
blend_button.click(
|
446 |
fn=blend_audio,
|
447 |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
448 |
outputs=blended_output
|
449 |
)
|
450 |
+
clear_blend.click(fn=lambda: "", inputs=None, outputs=blended_output)
|
451 |
|
452 |
# Footer
|
453 |
gr.Markdown("""
|
|
|
459 |
</div>
|
460 |
""")
|
461 |
|
|
|
462 |
gr.HTML("""
|
463 |
<div style="text-align: center; margin-top: 1rem;">
|
464 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|