Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -9,18 +9,20 @@ from transformers import ( | |
| 9 | 
             
                MusicgenForConditionalGeneration,
         | 
| 10 | 
             
            )
         | 
| 11 | 
             
            from scipy.io.wavfile import write
         | 
|  | |
| 12 | 
             
            import tempfile
         | 
| 13 | 
             
            from dotenv import load_dotenv
         | 
| 14 | 
             
            import spaces
         | 
| 15 |  | 
|  | |
| 16 | 
             
            load_dotenv()
         | 
| 17 | 
             
            hf_token = os.getenv("HF_TOKEN")
         | 
| 18 |  | 
| 19 | 
             
            # ---------------------------------------------------------------------
         | 
| 20 | 
             
            # Load Llama 3 Pipeline with Zero GPU (Encapsulated)
         | 
| 21 | 
             
            # ---------------------------------------------------------------------
         | 
| 22 | 
            -
            @spaces.GPU(duration=300) | 
| 23 | 
            -
            def generate_script(user_prompt: str, model_id: str, token: str):
         | 
| 24 | 
             
                try:
         | 
| 25 | 
             
                    tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
         | 
| 26 | 
             
                    model = AutoModelForCausalLM.from_pretrained(
         | 
| @@ -34,7 +36,7 @@ def generate_script(user_prompt: str, model_id: str, token: str): | |
| 34 |  | 
| 35 | 
             
                    system_prompt = (
         | 
| 36 | 
             
                        "You are an expert radio imaging producer specializing in sound design and music. "
         | 
| 37 | 
            -
                        " | 
| 38 | 
             
                    )
         | 
| 39 |  | 
| 40 | 
             
                    combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:"
         | 
| @@ -43,7 +45,6 @@ def generate_script(user_prompt: str, model_id: str, token: str): | |
| 43 | 
             
                except Exception as e:
         | 
| 44 | 
             
                    return f"Error generating script: {e}"
         | 
| 45 |  | 
| 46 | 
            -
             | 
| 47 | 
             
            # ---------------------------------------------------------------------
         | 
| 48 | 
             
            # Load MusicGen Model (Encapsulated)
         | 
| 49 | 
             
            # ---------------------------------------------------------------------
         | 
| @@ -53,49 +54,60 @@ def generate_audio(prompt: str, audio_length: int): | |
| 53 | 
             
                    musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
         | 
| 54 | 
             
                    musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
         | 
| 55 |  | 
| 56 | 
            -
                    # Ensure everything is on the same device (GPU or CPU)
         | 
| 57 | 
             
                    device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 58 | 
             
                    musicgen_model.to(device)
         | 
| 59 |  | 
| 60 | 
             
                    inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
         | 
| 61 | 
             
                    outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
         | 
| 62 |  | 
| 63 | 
            -
                    # Move outputs to CPU for further processing
         | 
| 64 | 
             
                    audio_data = outputs[0, 0].cpu().numpy()
         | 
| 65 | 
            -
             | 
| 66 | 
            -
                    # Normalize and save the audio file
         | 
| 67 | 
             
                    normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
         | 
|  | |
| 68 | 
             
                    output_path = f"{tempfile.gettempdir()}/generated_audio.wav"
         | 
| 69 | 
             
                    write(output_path, musicgen_model.config.audio_encoder.sampling_rate, normalized_audio)
         | 
| 70 | 
            -
             | 
| 71 | 
             
                    return output_path
         | 
| 72 | 
             
                except Exception as e:
         | 
| 73 | 
             
                    return f"Error generating audio: {e}"
         | 
| 74 |  | 
| 75 | 
            -
             | 
| 76 | 
             
            # ---------------------------------------------------------------------
         | 
| 77 | 
            -
            #  | 
| 78 | 
             
            # ---------------------------------------------------------------------
         | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 81 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 82 |  | 
| 83 | 
             
            def interface_generate_audio(script, audio_length):
         | 
| 84 | 
             
                return generate_audio(script, audio_length)
         | 
| 85 |  | 
|  | |
|  | |
| 86 |  | 
| 87 | 
             
            # ---------------------------------------------------------------------
         | 
| 88 | 
             
            # Interface
         | 
| 89 | 
             
            # ---------------------------------------------------------------------
         | 
| 90 | 
             
            with gr.Blocks() as demo:
         | 
| 91 | 
            -
                 | 
| 92 | 
            -
             | 
| 93 | 
            -
                     | 
| 94 | 
            -
                     | 
| 95 | 
            -
             | 
| 96 | 
            -
                    π₯ **Zero GPU** integration for efficiency and ease!  
         | 
| 97 | 
            -
                    """
         | 
| 98 | 
            -
                )
         | 
| 99 |  | 
| 100 | 
             
                # Script Generation Section
         | 
| 101 | 
             
                gr.Markdown("## βοΈ Step 1: Generate Your Promo Script")
         | 
| @@ -103,62 +115,72 @@ with gr.Blocks() as demo: | |
| 103 | 
             
                    user_prompt = gr.Textbox(
         | 
| 104 | 
             
                        label="π€ Enter Promo Idea",
         | 
| 105 | 
             
                        placeholder="E.g., A 15-second energetic jingle for a morning talk show.",
         | 
| 106 | 
            -
                        lines=2 | 
| 107 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 108 | 
             
                    )
         | 
| 109 | 
             
                    llama_model_id = gr.Textbox(
         | 
| 110 | 
            -
                        label=" | 
| 111 | 
            -
                        value="meta-llama/Meta-Llama-3-8B-Instruct" | 
| 112 | 
            -
                        info="Enter the Hugging Face model ID for Llama 3."
         | 
| 113 | 
             
                    )
         | 
| 114 | 
             
                generate_script_button = gr.Button("Generate Script β¨")
         | 
| 115 | 
            -
                script_output = gr.Textbox(
         | 
| 116 | 
            -
                    label="ποΈ Generated Promo Script",
         | 
| 117 | 
            -
                    lines=4,
         | 
| 118 | 
            -
                    interactive=False,
         | 
| 119 | 
            -
                    info="Your generated promo script will appear here."
         | 
| 120 | 
            -
                )
         | 
| 121 |  | 
| 122 | 
             
                # Audio Generation Section
         | 
| 123 | 
            -
                gr.Markdown("## π΅ Step 2: Generate  | 
| 124 | 
             
                with gr.Row():
         | 
| 125 | 
             
                    audio_length = gr.Slider(
         | 
| 126 | 
             
                        label="πΆ Audio Length (tokens)",
         | 
| 127 | 
             
                        minimum=128,
         | 
| 128 | 
             
                        maximum=1024,
         | 
| 129 | 
             
                        step=64,
         | 
| 130 | 
            -
                        value=512 | 
| 131 | 
            -
                        info="Select the desired audio token length."  
         | 
| 132 | 
             
                    )
         | 
| 133 | 
             
                generate_audio_button = gr.Button("Generate Audio πΆ")
         | 
| 134 | 
            -
                audio_output = gr.Audio(
         | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 139 |  | 
| 140 | 
             
                # Footer
         | 
| 141 | 
            -
                gr.Markdown(
         | 
| 142 | 
            -
                    """
         | 
| 143 | 
             
                    <br><hr>
         | 
| 144 | 
             
                    <p style="text-align: center; font-size: 0.9em;">
         | 
| 145 | 
             
                        Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
         | 
| 146 | 
             
                    </p>
         | 
| 147 | 
            -
             | 
| 148 | 
            -
                    elem_id="footer"
         | 
| 149 | 
            -
                )
         | 
| 150 |  | 
| 151 | 
             
                # Button Actions
         | 
| 152 | 
             
                generate_script_button.click(
         | 
| 153 | 
             
                    fn=interface_generate_script,
         | 
| 154 | 
            -
                    inputs=[user_prompt, llama_model_id],
         | 
| 155 | 
            -
                    outputs=script_output | 
| 156 | 
             
                )
         | 
| 157 | 
            -
             | 
| 158 | 
             
                generate_audio_button.click(
         | 
| 159 | 
             
                    fn=interface_generate_audio,
         | 
| 160 | 
             
                    inputs=[script_output, audio_length],
         | 
| 161 | 
            -
                    outputs=audio_output | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 162 | 
             
                )
         | 
| 163 |  | 
| 164 | 
             
            # ---------------------------------------------------------------------
         | 
|  | |
| 9 | 
             
                MusicgenForConditionalGeneration,
         | 
| 10 | 
             
            )
         | 
| 11 | 
             
            from scipy.io.wavfile import write
         | 
| 12 | 
            +
            from TTS.api import TTS
         | 
| 13 | 
             
            import tempfile
         | 
| 14 | 
             
            from dotenv import load_dotenv
         | 
| 15 | 
             
            import spaces
         | 
| 16 |  | 
| 17 | 
            +
            # Load environment variables
         | 
| 18 | 
             
            load_dotenv()
         | 
| 19 | 
             
            hf_token = os.getenv("HF_TOKEN")
         | 
| 20 |  | 
| 21 | 
             
            # ---------------------------------------------------------------------
         | 
| 22 | 
             
            # Load Llama 3 Pipeline with Zero GPU (Encapsulated)
         | 
| 23 | 
             
            # ---------------------------------------------------------------------
         | 
| 24 | 
            +
            @spaces.GPU(duration=300)
         | 
| 25 | 
            +
            def generate_script(user_prompt: str, duration: int, model_id: str, token: str):
         | 
| 26 | 
             
                try:
         | 
| 27 | 
             
                    tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
         | 
| 28 | 
             
                    model = AutoModelForCausalLM.from_pretrained(
         | 
|  | |
| 36 |  | 
| 37 | 
             
                    system_prompt = (
         | 
| 38 | 
             
                        "You are an expert radio imaging producer specializing in sound design and music. "
         | 
| 39 | 
            +
                        f"Generate a concise, creative promo script for a {duration}-second ad, focusing on auditory elements and musical appeal."
         | 
| 40 | 
             
                    )
         | 
| 41 |  | 
| 42 | 
             
                    combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:"
         | 
|  | |
| 45 | 
             
                except Exception as e:
         | 
| 46 | 
             
                    return f"Error generating script: {e}"
         | 
| 47 |  | 
|  | |
| 48 | 
             
            # ---------------------------------------------------------------------
         | 
| 49 | 
             
            # Load MusicGen Model (Encapsulated)
         | 
| 50 | 
             
            # ---------------------------------------------------------------------
         | 
|  | |
| 54 | 
             
                    musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
         | 
| 55 | 
             
                    musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
         | 
| 56 |  | 
|  | |
| 57 | 
             
                    device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 58 | 
             
                    musicgen_model.to(device)
         | 
| 59 |  | 
| 60 | 
             
                    inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
         | 
| 61 | 
             
                    outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
         | 
| 62 |  | 
|  | |
| 63 | 
             
                    audio_data = outputs[0, 0].cpu().numpy()
         | 
|  | |
|  | |
| 64 | 
             
                    normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
         | 
| 65 | 
            +
             | 
| 66 | 
             
                    output_path = f"{tempfile.gettempdir()}/generated_audio.wav"
         | 
| 67 | 
             
                    write(output_path, musicgen_model.config.audio_encoder.sampling_rate, normalized_audio)
         | 
|  | |
| 68 | 
             
                    return output_path
         | 
| 69 | 
             
                except Exception as e:
         | 
| 70 | 
             
                    return f"Error generating audio: {e}"
         | 
| 71 |  | 
|  | |
| 72 | 
             
            # ---------------------------------------------------------------------
         | 
| 73 | 
            +
            # Generate Voice-Over with Coqui XTTS-v2
         | 
| 74 | 
             
            # ---------------------------------------------------------------------
         | 
| 75 | 
            +
            @spaces.GPU(duration=300)
         | 
| 76 | 
            +
            def generate_voice(script: str, reference_audio: str, language: str):
         | 
| 77 | 
            +
                try:
         | 
| 78 | 
            +
                    tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=torch.cuda.is_available())
         | 
| 79 | 
            +
                    output_path = f"{tempfile.gettempdir()}/voice_over.wav"
         | 
| 80 | 
            +
                    tts.tts_to_file(
         | 
| 81 | 
            +
                        text=script,
         | 
| 82 | 
            +
                        file_path=output_path,
         | 
| 83 | 
            +
                        speaker_wav=reference_audio,
         | 
| 84 | 
            +
                        language=language,
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
                    return output_path
         | 
| 87 | 
            +
                except Exception as e:
         | 
| 88 | 
            +
                    return f"Error generating voice-over: {e}"
         | 
| 89 |  | 
| 90 | 
            +
            # ---------------------------------------------------------------------
         | 
| 91 | 
            +
            # Interface Functions
         | 
| 92 | 
            +
            # ---------------------------------------------------------------------
         | 
| 93 | 
            +
            def interface_generate_script(user_prompt, duration, llama_model_id):
         | 
| 94 | 
            +
                return generate_script(user_prompt, duration, llama_model_id, hf_token)
         | 
| 95 |  | 
| 96 | 
             
            def interface_generate_audio(script, audio_length):
         | 
| 97 | 
             
                return generate_audio(script, audio_length)
         | 
| 98 |  | 
| 99 | 
            +
            def interface_generate_voice(script, reference_audio, language):
         | 
| 100 | 
            +
                return generate_voice(script, reference_audio, language)
         | 
| 101 |  | 
| 102 | 
             
            # ---------------------------------------------------------------------
         | 
| 103 | 
             
            # Interface
         | 
| 104 | 
             
            # ---------------------------------------------------------------------
         | 
| 105 | 
             
            with gr.Blocks() as demo:
         | 
| 106 | 
            +
                gr.Markdown("""
         | 
| 107 | 
            +
                    # π§ All-in-One Radio Promo Studio π  
         | 
| 108 | 
            +
                    ### Create professional scripts, soundscapes, and voice-overs in minutes!  
         | 
| 109 | 
            +
                    π₯ Powered by **Llama 3**, **MusicGen**, and **XTTS-v2**
         | 
| 110 | 
            +
                """)
         | 
|  | |
|  | |
|  | |
| 111 |  | 
| 112 | 
             
                # Script Generation Section
         | 
| 113 | 
             
                gr.Markdown("## βοΈ Step 1: Generate Your Promo Script")
         | 
|  | |
| 115 | 
             
                    user_prompt = gr.Textbox(
         | 
| 116 | 
             
                        label="π€ Enter Promo Idea",
         | 
| 117 | 
             
                        placeholder="E.g., A 15-second energetic jingle for a morning talk show.",
         | 
| 118 | 
            +
                        lines=2
         | 
| 119 | 
            +
                    )
         | 
| 120 | 
            +
                    duration = gr.Dropdown(
         | 
| 121 | 
            +
                        label="β³ Duration",
         | 
| 122 | 
            +
                        choices=["15", "30", "60"],
         | 
| 123 | 
            +
                        value="15",
         | 
| 124 | 
            +
                        info="Choose the duration of the promo (in seconds)."
         | 
| 125 | 
             
                    )
         | 
| 126 | 
             
                    llama_model_id = gr.Textbox(
         | 
| 127 | 
            +
                        label="ποΈ Llama 3 Model ID",
         | 
| 128 | 
            +
                        value="meta-llama/Meta-Llama-3-8B-Instruct"
         | 
|  | |
| 129 | 
             
                    )
         | 
| 130 | 
             
                generate_script_button = gr.Button("Generate Script β¨")
         | 
| 131 | 
            +
                script_output = gr.Textbox(label="ποΈ Generated Promo Script", lines=4, interactive=False)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 132 |  | 
| 133 | 
             
                # Audio Generation Section
         | 
| 134 | 
            +
                gr.Markdown("## π΅ Step 2: Generate Background Music")
         | 
| 135 | 
             
                with gr.Row():
         | 
| 136 | 
             
                    audio_length = gr.Slider(
         | 
| 137 | 
             
                        label="πΆ Audio Length (tokens)",
         | 
| 138 | 
             
                        minimum=128,
         | 
| 139 | 
             
                        maximum=1024,
         | 
| 140 | 
             
                        step=64,
         | 
| 141 | 
            +
                        value=512
         | 
|  | |
| 142 | 
             
                    )
         | 
| 143 | 
             
                generate_audio_button = gr.Button("Generate Audio πΆ")
         | 
| 144 | 
            +
                audio_output = gr.Audio(label="π΅ Generated Audio", type="filepath")
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                # Voice-Over Section
         | 
| 147 | 
            +
                gr.Markdown("## ποΈ Step 3: Generate Voice-Over")
         | 
| 148 | 
            +
                with gr.Row():
         | 
| 149 | 
            +
                    reference_audio = gr.Audio(
         | 
| 150 | 
            +
                        label="π€ Upload Reference Voice (6 seconds)",
         | 
| 151 | 
            +
                        type="filepath"
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
                    language = gr.Dropdown(
         | 
| 154 | 
            +
                        label="π Language",
         | 
| 155 | 
            +
                        choices=["en", "es", "fr", "de", "it"],
         | 
| 156 | 
            +
                        value="en"
         | 
| 157 | 
            +
                    )
         | 
| 158 | 
            +
                generate_voice_button = gr.Button("Generate Voice-Over π€")
         | 
| 159 | 
            +
                voice_output = gr.Audio(label="π Generated Voice-Over", type="filepath")
         | 
| 160 |  | 
| 161 | 
             
                # Footer
         | 
| 162 | 
            +
                gr.Markdown("""
         | 
|  | |
| 163 | 
             
                    <br><hr>
         | 
| 164 | 
             
                    <p style="text-align: center; font-size: 0.9em;">
         | 
| 165 | 
             
                        Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
         | 
| 166 | 
             
                    </p>
         | 
| 167 | 
            +
                """)
         | 
|  | |
|  | |
| 168 |  | 
| 169 | 
             
                # Button Actions
         | 
| 170 | 
             
                generate_script_button.click(
         | 
| 171 | 
             
                    fn=interface_generate_script,
         | 
| 172 | 
            +
                    inputs=[user_prompt, duration, llama_model_id],
         | 
| 173 | 
            +
                    outputs=script_output
         | 
| 174 | 
             
                )
         | 
|  | |
| 175 | 
             
                generate_audio_button.click(
         | 
| 176 | 
             
                    fn=interface_generate_audio,
         | 
| 177 | 
             
                    inputs=[script_output, audio_length],
         | 
| 178 | 
            +
                    outputs=audio_output
         | 
| 179 | 
            +
                )
         | 
| 180 | 
            +
                generate_voice_button.click(
         | 
| 181 | 
            +
                    fn=interface_generate_voice,
         | 
| 182 | 
            +
                    inputs=[script_output, reference_audio, language],
         | 
| 183 | 
            +
                    outputs=voice_output
         | 
| 184 | 
             
                )
         | 
| 185 |  | 
| 186 | 
             
            # ---------------------------------------------------------------------
         | 
