Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,31 +8,39 @@ from scipy.io.wavfile import write
|
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
from pathlib import Path
|
|
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
hf_token = os.getenv("HF_TKN")
|
14 |
|
15 |
device_id = 0 if torch.cuda.is_available() else -1
|
16 |
|
|
|
17 |
captioning_pipeline = pipeline(
|
18 |
"image-to-text",
|
19 |
-
model="Salesforce/blip-image-captioning-large",
|
20 |
device=device_id
|
21 |
)
|
22 |
|
|
|
23 |
pipe = DiffusionPipeline.from_pretrained(
|
24 |
"cvssp/audioldm2",
|
25 |
use_auth_token=hf_token
|
26 |
)
|
27 |
|
|
|
|
|
28 |
@spaces.GPU(duration=120)
|
29 |
-
def analyze_image_with_free_model(
|
30 |
try:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
36 |
if not results or not isinstance(results, list):
|
37 |
return "Error: Could not generate caption.", True
|
38 |
|
@@ -42,8 +50,10 @@ def analyze_image_with_free_model(image_file):
|
|
42 |
return caption, False
|
43 |
|
44 |
except Exception as e:
|
|
|
45 |
return f"Error analyzing image: {e}", True
|
46 |
|
|
|
47 |
@spaces.GPU(duration=120)
|
48 |
def get_audioldm_from_caption(caption):
|
49 |
try:
|
@@ -64,6 +74,7 @@ def get_audioldm_from_caption(caption):
|
|
64 |
print(f"Error generating audio from caption: {e}")
|
65 |
return None
|
66 |
|
|
|
67 |
css = """
|
68 |
#col-container{
|
69 |
margin: 0 auto;
|
@@ -116,9 +127,11 @@ with gr.Blocks(css=css) as demo:
|
|
116 |
This app is a testament to the creative possibilities that emerge when technology meets art.
|
117 |
Enjoy exploring the auditory landscape of your images!
|
118 |
""")
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
122 |
return description
|
123 |
|
124 |
def generate_sound(description):
|
|
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
from pathlib import Path
|
11 |
+
from PIL import Image # <-- ADDED THIS IMPORT
|
12 |
+
import io # <-- ADDED THIS IMPORT
|
13 |
|
14 |
load_dotenv()
|
15 |
hf_token = os.getenv("HF_TKN")
|
16 |
|
17 |
device_id = 0 if torch.cuda.is_available() else -1
|
18 |
|
19 |
+
# Correctly initialize the modern, reliable captioning pipeline
|
20 |
captioning_pipeline = pipeline(
|
21 |
"image-to-text",
|
22 |
+
model="Salesforce/blip-image-captioning-large",
|
23 |
device=device_id
|
24 |
)
|
25 |
|
26 |
+
# Initialize the audio pipeline
|
27 |
pipe = DiffusionPipeline.from_pretrained(
|
28 |
"cvssp/audioldm2",
|
29 |
use_auth_token=hf_token
|
30 |
)
|
31 |
|
32 |
+
|
33 |
+
# === THIS IS THE CORRECTED FUNCTION ===
|
34 |
@spaces.GPU(duration=120)
|
35 |
+
def analyze_image_with_free_model(image_file_bytes):
|
36 |
try:
|
37 |
+
# No more temp files!
|
38 |
+
# Open the image data directly from memory using Pillow
|
39 |
+
image = Image.open(io.BytesIO(image_file_bytes))
|
40 |
|
41 |
+
# Pass the Pillow Image object directly to the pipeline. This is the robust method.
|
42 |
+
results = captioning_pipeline(image)
|
43 |
+
|
44 |
if not results or not isinstance(results, list):
|
45 |
return "Error: Could not generate caption.", True
|
46 |
|
|
|
50 |
return caption, False
|
51 |
|
52 |
except Exception as e:
|
53 |
+
print(f"ERROR in analyze_image_with_free_model: {e}") # Print error to logs
|
54 |
return f"Error analyzing image: {e}", True
|
55 |
|
56 |
+
|
57 |
@spaces.GPU(duration=120)
|
58 |
def get_audioldm_from_caption(caption):
|
59 |
try:
|
|
|
74 |
print(f"Error generating audio from caption: {e}")
|
75 |
return None
|
76 |
|
77 |
+
# --- Gradio UI (No changes needed here) ---
|
78 |
css = """
|
79 |
#col-container{
|
80 |
margin: 0 auto;
|
|
|
127 |
This app is a testament to the creative possibilities that emerge when technology meets art.
|
128 |
Enjoy exploring the auditory landscape of your images!
|
129 |
""")
|
130 |
+
|
131 |
+
# --- Gradio event handlers (I've updated the function called here) ---
|
132 |
+
def update_caption(image_file_bytes):
|
133 |
+
# We pass the bytes from the uploader directly to our corrected function
|
134 |
+
description, _ = analyze_image_with_free_model(image_file_bytes)
|
135 |
return description
|
136 |
|
137 |
def generate_sound(description):
|