Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,78 +8,94 @@ from scipy.io.wavfile import write
|
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
from pathlib import Path
|
11 |
-
from PIL import Image # <--
|
12 |
-
import io # <--
|
|
|
|
|
13 |
|
14 |
load_dotenv()
|
15 |
hf_token = os.getenv("HF_TKN")
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
# Correctly initialize the modern, reliable captioning pipeline
|
20 |
captioning_pipeline = pipeline(
|
21 |
"image-to-text",
|
22 |
model="Salesforce/blip-image-captioning-large",
|
23 |
-
device=
|
24 |
)
|
|
|
25 |
|
26 |
-
# Initialize the audio pipeline
|
27 |
pipe = DiffusionPipeline.from_pretrained(
|
28 |
"cvssp/audioldm2",
|
29 |
-
|
30 |
)
|
|
|
|
|
31 |
|
|
|
32 |
|
33 |
-
# === THIS IS THE CORRECTED FUNCTION ===
|
34 |
@spaces.GPU(duration=120)
|
35 |
def analyze_image_with_free_model(image_file_bytes):
|
|
|
36 |
try:
|
37 |
-
|
38 |
# Open the image data directly from memory using Pillow
|
39 |
-
image = Image.open(io.BytesIO(image_file_bytes))
|
40 |
|
41 |
-
|
42 |
results = captioning_pipeline(image)
|
43 |
|
44 |
if not results or not isinstance(results, list):
|
|
|
45 |
return "Error: Could not generate caption.", True
|
46 |
|
47 |
caption = results[0].get("generated_text", "").strip()
|
48 |
if not caption:
|
|
|
49 |
return "No caption was generated.", True
|
|
|
|
|
50 |
return caption, False
|
51 |
|
52 |
except Exception as e:
|
53 |
-
print(f"
|
54 |
return f"Error analyzing image: {e}", True
|
55 |
|
56 |
-
|
57 |
@spaces.GPU(duration=120)
|
58 |
def get_audioldm_from_caption(caption):
|
|
|
59 |
try:
|
60 |
-
|
|
|
|
|
|
|
61 |
audio_output = pipe(
|
62 |
prompt=caption,
|
63 |
-
num_inference_steps=
|
64 |
-
guidance_scale=7.
|
65 |
-
)
|
66 |
-
pipe.to("cpu")
|
67 |
-
audio = audio_output.audios[0]
|
68 |
|
|
|
|
|
|
|
69 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
70 |
-
|
|
|
|
|
71 |
return temp_wav.name
|
72 |
|
73 |
except Exception as e:
|
74 |
-
print(f"
|
75 |
return None
|
76 |
|
77 |
-
# --- Gradio
|
|
|
78 |
css = """
|
79 |
-
#col-container{
|
80 |
-
margin: 0 auto;
|
81 |
-
max-width: 800px;
|
82 |
-
}
|
83 |
"""
|
84 |
|
85 |
with gr.Blocks(css=css) as demo:
|
@@ -92,52 +108,42 @@ with gr.Blocks(css=css) as demo:
|
|
92 |
""")
|
93 |
|
94 |
gr.Markdown("""
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
**💡 How it works:**
|
99 |
-
1. **Upload an image**: Choose an image that you'd like to analyze.
|
100 |
-
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
|
101 |
-
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
102 |
-
sound effect that matches the image context.
|
103 |
-
|
104 |
-
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
105 |
""")
|
106 |
|
107 |
image_upload = gr.File(label="Upload Image", type="binary")
|
108 |
-
generate_description_button = gr.Button("Generate Description")
|
109 |
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
110 |
generate_sound_button = gr.Button("Generate Sound Effect")
|
111 |
audio_output = gr.Audio(label="Generated Sound Effect")
|
112 |
|
113 |
gr.Markdown("""
|
114 |
-
## 👥
|
115 |
-
We welcome contributions and suggestions for improvements. Your feedback is invaluable
|
116 |
-
to the continuous enhancement of this application.
|
117 |
-
|
118 |
For support, questions, or to contribute, please contact us at
|
119 |
[[email protected]](mailto:[email protected]).
|
120 |
-
|
121 |
Support our work and get involved by donating through
|
122 |
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
123 |
""")
|
124 |
-
|
125 |
-
gr.Markdown("""
|
126 |
-
## 📢 Stay Connected
|
127 |
-
This app is a testament to the creative possibilities that emerge when technology meets art.
|
128 |
-
Enjoy exploring the auditory landscape of your images!
|
129 |
-
""")
|
130 |
|
131 |
-
# ---
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
return description
|
136 |
|
137 |
def generate_sound(description):
|
|
|
138 |
if not description or description.startswith("Error"):
|
|
|
139 |
return None
|
140 |
audio_path = get_audioldm_from_caption(description)
|
|
|
|
|
141 |
return audio_path
|
142 |
|
143 |
generate_description_button.click(
|
@@ -153,6 +159,6 @@ with gr.Blocks(css=css) as demo:
|
|
153 |
)
|
154 |
|
155 |
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
156 |
-
html = gr.HTML()
|
157 |
|
158 |
-
|
|
|
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
from pathlib import Path
|
11 |
+
from PIL import Image # <-- Required for new model
|
12 |
+
import io # <-- Required for new model
|
13 |
+
|
14 |
+
# --- Setup Models and Device ---
|
15 |
|
16 |
load_dotenv()
|
17 |
hf_token = os.getenv("HF_TKN")
|
18 |
|
19 |
+
# Use GPU if available, otherwise CPU
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
print(f"Using device: {device}")
|
22 |
|
23 |
# Correctly initialize the modern, reliable captioning pipeline
|
24 |
captioning_pipeline = pipeline(
|
25 |
"image-to-text",
|
26 |
model="Salesforce/blip-image-captioning-large",
|
27 |
+
device=device
|
28 |
)
|
29 |
+
print("Image captioning pipeline loaded.")
|
30 |
|
31 |
+
# Initialize the audio pipeline. Use float16 for less VRAM on GPU.
|
32 |
pipe = DiffusionPipeline.from_pretrained(
|
33 |
"cvssp/audioldm2",
|
34 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
35 |
)
|
36 |
+
print("Audio generation pipeline loaded.")
|
37 |
+
|
38 |
|
39 |
+
# --- Core Functions ---
|
40 |
|
|
|
41 |
@spaces.GPU(duration=120)
|
42 |
def analyze_image_with_free_model(image_file_bytes):
|
43 |
+
"""Takes image bytes and returns a caption."""
|
44 |
try:
|
45 |
+
print("Received image bytes, opening with Pillow...")
|
46 |
# Open the image data directly from memory using Pillow
|
47 |
+
image = Image.open(io.BytesIO(image_file_bytes)).convert("RGB")
|
48 |
|
49 |
+
print("Generating caption...")
|
50 |
results = captioning_pipeline(image)
|
51 |
|
52 |
if not results or not isinstance(results, list):
|
53 |
+
print("ERROR: Caption generation returned invalid results.")
|
54 |
return "Error: Could not generate caption.", True
|
55 |
|
56 |
caption = results[0].get("generated_text", "").strip()
|
57 |
if not caption:
|
58 |
+
print("ERROR: Generated caption is empty.")
|
59 |
return "No caption was generated.", True
|
60 |
+
|
61 |
+
print(f"Successfully generated caption: {caption}")
|
62 |
return caption, False
|
63 |
|
64 |
except Exception as e:
|
65 |
+
print(f"!!!!!! EXCEPTION in analyze_image_with_free_model: {e}")
|
66 |
return f"Error analyzing image: {e}", True
|
67 |
|
|
|
68 |
@spaces.GPU(duration=120)
|
69 |
def get_audioldm_from_caption(caption):
|
70 |
+
"""Takes a text caption and returns a filepath to a generated WAV file."""
|
71 |
try:
|
72 |
+
# Move the large audio pipeline to the GPU only when it's being used
|
73 |
+
pipe.to(device)
|
74 |
+
|
75 |
+
print(f"Generating audio for prompt: '{caption}'")
|
76 |
audio_output = pipe(
|
77 |
prompt=caption,
|
78 |
+
num_inference_steps=25, # Fewer steps for faster generation
|
79 |
+
guidance_scale=7.0
|
80 |
+
).audios[0]
|
|
|
|
|
81 |
|
82 |
+
# Move the pipeline back to CPU to free up GPU memory for others
|
83 |
+
pipe.to("cpu")
|
84 |
+
|
85 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
86 |
+
print(f"Saving audio to temporary file: {temp_wav.name}")
|
87 |
+
# write(file, sample_rate, data)
|
88 |
+
write(temp_wav.name, 16000, audio_output)
|
89 |
return temp_wav.name
|
90 |
|
91 |
except Exception as e:
|
92 |
+
print(f"!!!!!! EXCEPTION in get_audioldm_from_caption: {e}")
|
93 |
return None
|
94 |
|
95 |
+
# --- Gradio Interface ---
|
96 |
+
|
97 |
css = """
|
98 |
+
#col-container{ margin: 0 auto; max-width: 800px; }
|
|
|
|
|
|
|
99 |
"""
|
100 |
|
101 |
with gr.Blocks(css=css) as demo:
|
|
|
108 |
""")
|
109 |
|
110 |
gr.Markdown("""
|
111 |
+
1. **Upload an image**.
|
112 |
+
2. Click **Generate Description**.
|
113 |
+
3. Click **Generate Sound Effect**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
""")
|
115 |
|
116 |
image_upload = gr.File(label="Upload Image", type="binary")
|
117 |
+
generate_description_button = gr.Button("Generate Description", variant="primary")
|
118 |
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
119 |
generate_sound_button = gr.Button("Generate Sound Effect")
|
120 |
audio_output = gr.Audio(label="Generated Sound Effect")
|
121 |
|
122 |
gr.Markdown("""
|
123 |
+
## 👥 Contribute & Support
|
|
|
|
|
|
|
124 |
For support, questions, or to contribute, please contact us at
|
125 |
[[email protected]](mailto:[email protected]).
|
|
|
126 |
Support our work and get involved by donating through
|
127 |
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
128 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
# --- Event Handlers ---
|
131 |
+
|
132 |
+
def update_caption(image_bytes):
|
133 |
+
"""Wrapper function for the button click."""
|
134 |
+
if image_bytes is None:
|
135 |
+
return "Please upload an image first."
|
136 |
+
description, _ = analyze_image_with_free_model(image_bytes)
|
137 |
return description
|
138 |
|
139 |
def generate_sound(description):
|
140 |
+
"""Wrapper function for the button click."""
|
141 |
if not description or description.startswith("Error"):
|
142 |
+
gr.Warning("Cannot generate sound without a valid description!")
|
143 |
return None
|
144 |
audio_path = get_audioldm_from_caption(description)
|
145 |
+
if audio_path is None:
|
146 |
+
gr.Error("Failed to generate audio. Please check the logs.")
|
147 |
return audio_path
|
148 |
|
149 |
generate_description_button.click(
|
|
|
159 |
)
|
160 |
|
161 |
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
|
|
162 |
|
163 |
+
# Launch the app. `share=True` is not needed on Spaces.
|
164 |
+
demo.launch()
|