Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,261 Bytes
cc49c73 c2640c7 cc49c73 33f355d c2640c7 deede6d cc49c73 c2640c7 cc49c73 89c8e20 c2640c7 33f355d deede6d 33f355d deede6d 33f355d cc49c73 33f355d deede6d 33f355d c2640c7 deede6d 33f355d cc49c73 c2640c7 cc49c73 c2640c7 cc49c73 c2640c7 89c8e20 30c06ca 89c8e20 30c06ca 89c8e20 30c06ca cc49c73 c2640c7 33f355d c2640c7 33f355d c2640c7 33f355d c2640c7 33f355d c2640c7 33f355d c2640c7 deede6d c2640c7 cc49c73 c2640c7 cc49c73 c2640c7 cc49c73 c2640c7 33f355d c2640c7 33f355d cc49c73 c2640c7 deede6d c2640c7 cc49c73 c2640c7 deede6d c2640c7 cc49c73 deede6d c2640c7 cc49c73 c2640c7 deede6d cc49c73 c2640c7 deede6d c2640c7 deede6d c2640c7 deede6d c2640c7 deede6d c2640c7 deede6d c2640c7 deede6d c2640c7 deede6d c2640c7 deede6d c2640c7 33f355d deede6d c2640c7 deede6d c2640c7 33f355d c2640c7 deede6d 50d7cf9 deede6d c2640c7 deede6d 50d7cf9 deede6d c2640c7 deede6d c2640c7 deede6d cc49c73 deede6d c2640c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import os, sys, json, tempfile, subprocess, shutil, uuid
from pathlib import Path
from typing import Optional, Tuple, List
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from loguru import logger
import torch, torchaudio
# ========= Paths & Config =========
ROOT = Path(__file__).parent.resolve()
REPO_DIR = ROOT / "HunyuanVideo-Foley"
WEIGHTS_DIR = ROOT / "weights"
CACHE_DIR = ROOT / "cache"
OUT_DIR = ROOT / "outputs"
ASSETS = ROOT / "assets"
ASSETS.mkdir(exist_ok=True)
APP_TITLE = os.environ.get("APP_TITLE", "Foley Studio · ZeroGPU")
APP_TAGLINE = os.environ.get("APP_TAGLINE", "Generate scene-true foley for short clips (ZeroGPU-ready).")
PRIMARY_COLOR = os.environ.get("PRIMARY_COLOR", "#6B5BFF") # UI accent only
# ZeroGPU-safe defaults (tweak in Space Secrets if needed)
MAX_SECS = int(os.environ.get("MAX_SECS", "15")) # keep clips short for ZeroGPU window
TARGET_H = int(os.environ.get("TARGET_H", "480")) # downscale target height
SR = int(os.environ.get("TARGET_SR", "48000")) # WAV sample rate
ZEROGPU_DURATION = int(os.environ.get("ZEROGPU_DURATION", "110")) # must be <= platform limit
def sh(cmd: str):
print(">>", cmd)
subprocess.run(cmd, shell=True, check=True)
def ffprobe_duration(path: str) -> float:
try:
out = subprocess.check_output([
"ffprobe", "-v", "error", "-show_entries", "format=duration",
"-of", "default=noprint_wrappers=1:nokey=1", path
]).decode().strip()
return float(out)
except Exception:
return 0.0
def _clone_without_lfs():
"""
Clone repo while skipping LFS smudge to avoid demo video downloads.
Falls back to sparse checkout with only essential paths.
"""
if REPO_DIR.exists():
return
# Attempt 1: shallow clone with LFS disabled
try:
sh(
"GIT_LFS_SKIP_SMUDGE=1 "
"git -c filter.lfs.smudge= -c filter.lfs.required=false "
f"clone --depth 1 https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley.git {REPO_DIR}"
)
assets = REPO_DIR / "assets"
if assets.exists():
shutil.rmtree(assets, ignore_errors=True)
return
except subprocess.CalledProcessError as e:
print("Shallow clone with LFS skipped failed, trying sparse checkout…", e)
# Attempt 2: sparse checkout minimal files
REPO_DIR.mkdir(parents=True, exist_ok=True)
sh(f"git -C {REPO_DIR} init")
sh(
f"git -C {REPO_DIR} -c filter.lfs.smudge= -c filter.lfs.required=false "
"remote add origin https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley.git"
)
sh(f"git -C {REPO_DIR} config core.sparseCheckout true")
sparse_file = REPO_DIR / ".git" / "info" / "sparse-checkout"
sparse_file.parent.mkdir(parents=True, exist_ok=True)
sparse_file.write_text("\n".join([
"hunyuanvideo_foley/",
"configs/",
"gradio_app.py",
"requirements.txt",
"LICENSE",
"README.md",
]) + "\n")
# Try main, fallback to master
try:
sh(f"git -C {REPO_DIR} fetch --depth 1 origin main")
sh(f"git -C {REPO_DIR} checkout main")
except subprocess.CalledProcessError:
sh(f"git -C {REPO_DIR} fetch --depth 1 origin master")
sh(f"git -C {REPO_DIR} checkout master")
def prepare_once():
"""Clone code (skip LFS), download weights, set env, prepare dirs."""
_clone_without_lfs()
# Ensure we can import their package
if str(REPO_DIR) not in sys.path:
sys.path.insert(0, str(REPO_DIR))
WEIGHTS_DIR.mkdir(parents=True, exist_ok=True)
snapshot_download(
repo_id="tencent/HunyuanVideo-Foley",
local_dir=str(WEIGHTS_DIR),
local_dir_use_symlinks=False,
repo_type="model",
resume_download=True,
)
os.environ["HIFI_FOLEY_MODEL_PATH"] = str(WEIGHTS_DIR)
CACHE_DIR.mkdir(exist_ok=True)
OUT_DIR.mkdir(exist_ok=True)
prepare_once()
# ---- Friendly dependency check (correct package name) ------------------------
try:
import audiotools # provided by the PyPI package 'descript-audiotools'
except Exception as e:
raise RuntimeError(
"Missing module 'audiotools'. Install it via the PyPI package "
"'descript-audiotools' (e.g., add 'descript-audiotools>=0.7.2' "
"to requirements.txt) and restart the Space."
) from e
# Now safe to import their internals
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process
from hunyuanvideo_foley.utils.feature_utils import feature_process
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
# ========= Native Model Setup =========
MODEL_PATH = os.environ.get("HIFI_FOLEY_MODEL_PATH", str(WEIGHTS_DIR))
CONFIG_PATH = str(REPO_DIR / "configs" / "hunyuanvideo-foley-xxl.yaml")
_model_dict = None
_cfg = None
_device = None
def _setup_device(device_str: str = "auto", gpu_id: int = 0) -> torch.device:
if device_str == "auto":
if torch.cuda.is_available():
d = torch.device(f"cuda:{gpu_id}")
logger.info(f"Using CUDA {d}")
elif torch.backends.mps.is_available():
d = torch.device("mps")
logger.info("Using MPS")
else:
d = torch.device("cpu")
logger.info("Using CPU")
else:
d = torch.device(device_str if device_str != "cuda" else f"cuda:{gpu_id}")
logger.info(f"Using specified device: {d}")
return d
def auto_load_models() -> str:
"""Download weights if needed + load model natively."""
global _model_dict, _cfg, _device
if not os.path.exists(MODEL_PATH):
os.makedirs(MODEL_PATH, exist_ok=True)
if not os.path.exists(CONFIG_PATH):
return f"❌ Config file not found: {CONFIG_PATH}"
_device = _setup_device("auto", 0)
logger.info("Loading HunyuanVideo-Foley model...")
logger.info(f"MODEL_PATH: {MODEL_PATH}")
logger.info(f"CONFIG_PATH: {CONFIG_PATH}")
_model_dict, _cfg = load_model(MODEL_PATH, CONFIG_PATH, _device)
logger.info("✅ Model loaded")
return "✅ Model loaded"
# Init logger and load model once
logger.remove()
logger.add(lambda msg: print(msg, end=''), level="INFO")
logger.info(auto_load_models())
# ========= Preprocessing =========
def preprocess_video(in_path: str) -> Tuple[str, float]:
"""
- Validate/trim to <= MAX_SECS.
- Downscale to TARGET_H (keep AR), strip original audio.
- Return processed mp4 path and final duration.
"""
dur = ffprobe_duration(in_path)
if dur == 0:
raise RuntimeError("Unable to read the video duration.")
temp_dir = Path(tempfile.mkdtemp(prefix="pre_"))
trimmed = temp_dir / "trim.mp4"
processed = temp_dir / "proc.mp4"
trim_args = ["-t", str(MAX_SECS)] if dur > MAX_SECS else []
# Normalize container & remove audio
sh(" ".join([
"ffmpeg", "-y", "-i", f"\"{in_path}\"",
*trim_args,
"-an",
"-vcodec", "libx264", "-preset", "veryfast", "-crf", "23",
"-movflags", "+faststart",
f"\"{trimmed}\""
]))
# Downscale to TARGET_H; ensure mod2 width, baseline profile
vf = f"scale=-2:{TARGET_H}:flags=bicubic"
sh(" ".join([
"ffmpeg", "-y", "-i", f"\"{trimmed}\"",
"-vf", f"\"{vf}\"",
"-an",
"-vcodec", "libx264", "-profile:v", "baseline", "-level", "3.1",
"-pix_fmt", "yuv420p",
"-preset", "veryfast", "-crf", "24",
"-movflags", "+faststart",
f"\"{processed}\""
]))
final_dur = min(dur, float(MAX_SECS))
return str(processed), final_dur
# ========= Inference (ZeroGPU) =========
@spaces.GPU(duration=ZEROGPU_DURATION) # tune via env if needed
@torch.inference_mode()
def run_model(video_path: str, prompt_text: str,
guidance_scale: float = 4.5,
num_inference_steps: int = 50,
sample_nums: int = 1) -> Tuple[List[str], int]:
"""
Native inference (no shell). Returns ([wav_paths], sample_rate).
"""
if _model_dict is None or _cfg is None:
raise RuntimeError("Model not loaded yet.")
text_prompt = (prompt_text or "").strip()
# Extract features
visual_feats, text_feats, audio_len_s = feature_process(
video_path, text_prompt, _model_dict, _cfg
)
# Generate audio (B x C x T)
logger.info(f"Generating {sample_nums} sample(s)...")
audio_batch, sr = denoise_process(
visual_feats, text_feats, audio_len_s, _model_dict, _cfg,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
batch_size=sample_nums
)
# Save each sample as WAV
out_dir = OUT_DIR / f"job_{uuid.uuid4().hex[:8]}"
out_dir.mkdir(parents=True, exist_ok=True)
wav_paths = []
for i in range(sample_nums):
wav_p = out_dir / f"generated_audio_{i+1}.wav"
torchaudio.save(str(wav_p), audio_batch[i], sr)
wav_paths.append(str(wav_p))
return wav_paths, sr
# ========= Optional: Mux Foley back to video =========
def mux_audio_with_video(video_path: str, audio_path: str) -> str:
out_path = Path(tempfile.mkdtemp(prefix="mux_")) / "with_foley.mp4"
sh(" ".join([
"ffmpeg", "-y",
"-i", f"\"{video_path}\"",
"-i", f"\"{audio_path}\"",
"-map", "0:v:0", "-map", "1:a:0",
"-c:v", "copy", "-c:a", "aac", "-b:a", "192k",
"-shortest",
f"\"{out_path}\""
]))
return str(out_path)
# ========= UI Handlers =========
def single_generate(video: str, prompt: str, want_mux: bool, project_name: str):
history = []
try:
if not video:
return None, None, "⚠️ Please upload a video.", history
history.append(["Preprocess", "Downscaling & trimming"])
pre_path, final_dur = preprocess_video(video)
history.append(["Inference", "ZeroGPU native pipeline"])
wav_list, sr = run_model(
pre_path, prompt or "", guidance_scale=4.5, num_inference_steps=50, sample_nums=1
)
if not wav_list:
raise RuntimeError("No audio produced.")
wav = wav_list[0]
muxed = None
if want_mux:
history.append(["Mux", "Merging foley with video"])
muxed = mux_audio_with_video(pre_path, wav)
history.append(["Done", f"OK · ~{final_dur:.1f}s"])
return wav, muxed, f"✅ Completed (~{final_dur:.1f}s)", history
except Exception as e:
history.append(["Error", str(e)])
return None, None, f"❌ {type(e).__name__}: {e}", history
def batch_lite_generate(files: List[str], prompt: str, want_mux: bool):
log = []
if not files:
return "⚠️ Please upload 1–3 videos.", log
if len(files) > 3:
files = files[:3]
log.append(["Info", "Limiting to first 3 videos."])
outputs = []
for i, f in enumerate(files, 1):
try:
log.append([f"Preprocess {i}", Path(f).name])
pre, final_dur = preprocess_video(f)
log.append([f"Run {i}", f"ZeroGPU ~{final_dur:.1f}s"])
wav_list, sr = run_model(pre, prompt or "", sample_nums=1)
if not wav_list:
raise RuntimeError("No audio produced.")
wav = wav_list[0]
muxed = mux_audio_with_video(pre, wav) if want_mux else None
outputs.append((wav, muxed))
log.append([f"Done {i}", "OK"])
except Exception as e:
log.append([f"Error {i}", str(e)])
manifest = OUT_DIR / f"batchlite_{uuid.uuid4().hex[:6]}.json"
manifest.write_text(json.dumps(
[{"wav": w, "video": v} for (w, v) in outputs], ensure_ascii=False, indent=2
))
return f"✅ Batch-lite finished · items: {len(outputs)}", log
# ========= UI (refreshed design) =========
THEME_CSS = f"""
:root {{
--brand: {PRIMARY_COLOR};
--bg: #0f1120;
--panel: #181a2e;
--text: #edf0ff;
--muted: #b7bce3;
--card: #15172a;
}}
.gradio-container {{
font-family: Inter, ui-sans-serif, -apple-system, Segoe UI, Roboto, Cairo, Noto Sans, Arial;
background: var(--bg);
color: var(--text);
}}
#hero {{
background: linear-gradient(135deg, var(--brand) 0%, #2f2e8b 40%, #1b1a3a 100%);
border-radius: 18px;
padding: 18px 20px;
color: white;
box-shadow: 0 10px 30px rgba(0,0,0,.35);
}}
#hero h1 {{
margin: 0 0 6px 0;
font-size: 20px;
font-weight: 700;
letter-spacing: .2px;
}}
#hero p {{
margin: 0;
opacity: .95;
}}
.gr-tabitem, .gr-block.gr-group, .gr-panel {{
background: var(--panel);
border-radius: 16px !important;
box-shadow: 0 6px 18px rgba(0,0,0,.28);
border: 1px solid rgba(255,255,255,.04);
}}
.gr-button {{
border-radius: 12px !important;
border: 1px solid rgba(255,255,255,.08) !important;
}}
.gradio-container .tabs .tab-nav button.selected {{
background: rgba(255,255,255,.06);
border-radius: 12px;
border: 1px solid rgba(255,255,255,.08);
}}
.badge {{
display:inline-block; padding:2px 8px; border-radius:999px;
background: rgba(255,255,255,.12); color:#fff; font-size:12px
}}
"""
with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
with gr.Row():
gr.HTML(f"""
<div id="hero">
<h1>{APP_TITLE}</h1>
<p>{APP_TAGLINE}</p>
<div style="margin-top:8px"><span class="badge">ZeroGPU</span> <span class="badge">Auto-trim ≤ {MAX_SECS}s</span> <span class="badge">Downscale {TARGET_H}p</span></div>
</div>
""")
with gr.Tabs():
with gr.Tab("🎬 Single Clip"):
with gr.Group():
project_name = gr.Textbox(
label="Project name (optional)",
placeholder="Enter a short label for this clip"
)
with gr.Row():
v_single = gr.Video(label=f"Video (≤ ~{MAX_SECS}s recommended)")
p_single = gr.Textbox(
label="Sound prompt (optional)",
placeholder="e.g., soft footsteps on wood, light rain, indoor reverb"
)
with gr.Row():
want_mux_single = gr.Checkbox(value=True, label="Mux foley into MP4 output")
run_btn = gr.Button("Generate", variant="primary")
with gr.Row():
out_audio = gr.Audio(label=f"Generated Foley ({SR//1000} kHz WAV)", type="filepath")
out_mux = gr.Video(label="Video + Foley (MP4)", visible=True)
status_md = gr.Markdown()
history_table = gr.Dataframe(
headers=["Step", "Note"], datatype=["str","str"],
interactive=False, wrap=True, label="Activity"
)
run_btn.click(
single_generate,
inputs=[v_single, p_single, want_mux_single, project_name],
outputs=[out_audio, out_mux, status_md, history_table]
)
with gr.Tab("📦 Batch-Lite (1–3 clips)"):
files = gr.Files(label="Upload 1–3 short videos", file_types=[".mp4",".mov"], file_count="multiple")
prompt_b = gr.Textbox(label="Global prompt (optional)")
want_mux_b = gr.Checkbox(value=True, label="Mux each output")
go_b = gr.Button("Run batch-lite")
batch_status = gr.Markdown()
batch_log = gr.Dataframe(
headers=["Step","Note"], datatype=["str","str"],
interactive=False, wrap=True, label="Batch Log"
)
go_b.click(
batch_lite_generate,
inputs=[files, prompt_b, want_mux_b],
outputs=[batch_status, batch_log]
)
with gr.Tab("ℹ️ Tips"):
gr.Markdown(f"""
**Usage guidelines**
- Keep clips short (the tool trims to **≤ {MAX_SECS}s** automatically).
- The video is downscaled to **{TARGET_H}p** to fit the ZeroGPU time window.
- If you see a quota message, try again later (ZeroGPU limits GPU minutes per visitor).
**Outputs**
- WAV is **{SR//1000} kHz** stereo.
- Enable **Mux** to get a ready MP4 with the generated foley track.
""")
demo.queue(max_size=24).launch()
|