Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,9 @@ import os, sys, json, tempfile, subprocess, shutil, uuid, glob, traceback, datet
|
|
2 |
from pathlib import Path
|
3 |
from typing import Tuple, List
|
4 |
|
5 |
-
#
|
6 |
import faulthandler
|
7 |
faulthandler.enable()
|
8 |
-
|
9 |
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "false")
|
10 |
os.environ.setdefault("GRADIO_NUM_PORTS", "1")
|
11 |
os.environ.setdefault("HF_HUB_VERBOSE", "1")
|
@@ -17,35 +16,40 @@ def _crash_trap(exctype, value, tb):
|
|
17 |
print(f"\n===== FATAL ({ts}Z) =====================================")
|
18 |
traceback.print_exception(exctype, value, tb)
|
19 |
print("=========================================================\n", flush=True)
|
20 |
-
|
21 |
sys.excepthook = _crash_trap
|
22 |
-
# ============================================================
|
23 |
|
|
|
24 |
import gradio as gr
|
25 |
-
from spaces import GPU #
|
26 |
-
from huggingface_hub import snapshot_download
|
27 |
from loguru import logger
|
28 |
-
import torch, torchaudio
|
29 |
|
30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
ROOT = Path(__file__).parent.resolve()
|
32 |
REPO_DIR = ROOT / "HunyuanVideo-Foley"
|
33 |
WEIGHTS_DIR = ROOT / "weights"
|
34 |
CACHE_DIR = ROOT / "cache"
|
35 |
OUT_DIR = ROOT / "outputs"
|
36 |
ASSETS = ROOT / "assets"
|
37 |
-
ASSETS
|
|
|
38 |
|
39 |
APP_TITLE = os.environ.get("APP_TITLE", "Foley Studio · ZeroGPU")
|
40 |
APP_TAGLINE = os.environ.get("APP_TAGLINE", "Generate scene-true foley for short clips (ZeroGPU-ready).")
|
41 |
PRIMARY_COLOR = os.environ.get("PRIMARY_COLOR", "#6B5BFF")
|
42 |
|
43 |
-
# ZeroGPU-
|
44 |
MAX_SECS = int(os.environ.get("MAX_SECS", "15"))
|
45 |
TARGET_H = int(os.environ.get("TARGET_H", "480"))
|
46 |
SR = int(os.environ.get("TARGET_SR", "48000"))
|
47 |
ZEROGPU_DURATION = int(os.environ.get("ZEROGPU_DURATION", "110"))
|
48 |
|
|
|
49 |
def sh(cmd: str):
|
50 |
print(">>", cmd)
|
51 |
subprocess.run(cmd, shell=True, check=True)
|
@@ -61,10 +65,6 @@ def ffprobe_duration(path: str) -> float:
|
|
61 |
return 0.0
|
62 |
|
63 |
def _clone_without_lfs():
|
64 |
-
"""
|
65 |
-
Clone repo while skipping LFS smudge to avoid huge demo assets.
|
66 |
-
Falls back to sparse checkout with only essential paths.
|
67 |
-
"""
|
68 |
if REPO_DIR.exists():
|
69 |
return
|
70 |
try:
|
@@ -104,14 +104,11 @@ def _clone_without_lfs():
|
|
104 |
sh(f"git -C {REPO_DIR} fetch --depth 1 origin master")
|
105 |
sh(f"git -C {REPO_DIR} checkout master")
|
106 |
|
107 |
-
def
|
108 |
-
|
109 |
_clone_without_lfs()
|
110 |
-
|
111 |
if str(REPO_DIR) not in sys.path:
|
112 |
sys.path.insert(0, str(REPO_DIR))
|
113 |
-
|
114 |
-
WEIGHTS_DIR.mkdir(parents=True, exist_ok=True)
|
115 |
snapshot_download(
|
116 |
repo_id="tencent/HunyuanVideo-Foley",
|
117 |
local_dir=str(WEIGHTS_DIR),
|
@@ -121,20 +118,45 @@ def prepare_once():
|
|
121 |
)
|
122 |
os.environ["HIFI_FOLEY_MODEL_PATH"] = str(WEIGHTS_DIR)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
prepare_once()
|
128 |
|
129 |
-
# Prefer safetensors & fast transfer
|
130 |
os.environ["TRANSFORMERS_PREFER_SAFETENSORS"] = "1"
|
131 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
snapshot_download(
|
139 |
repo_id="laion/larger_clap_general",
|
140 |
allow_patterns=[
|
@@ -146,13 +168,9 @@ def ensure_clap_safetensors():
|
|
146 |
local_dir=None,
|
147 |
local_dir_use_symlinks=False,
|
148 |
)
|
149 |
-
|
150 |
-
def _purge_clap_pt_bins():
|
151 |
-
"""Remove any cached .bin for laion/larger_clap_general."""
|
152 |
cache_root = Path.home() / ".cache" / "huggingface" / "hub"
|
153 |
-
for pat in [
|
154 |
-
cache_root / "models--laion--larger_clap_general" / "snapshots" / "*" / "*.bin",
|
155 |
-
]:
|
156 |
for f in glob.glob(str(pat)):
|
157 |
try:
|
158 |
Path(f).unlink()
|
@@ -160,39 +178,8 @@ def _purge_clap_pt_bins():
|
|
160 |
except Exception:
|
161 |
pass
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
import audiotools # provided by PyPI package 'descript-audiotools'
|
166 |
-
except Exception as e:
|
167 |
-
raise RuntimeError(
|
168 |
-
"Missing module 'audiotools'. Install via PyPI package "
|
169 |
-
"'descript-audiotools' (add 'descript-audiotools>=0.7.2' to requirements.txt)."
|
170 |
-
) from e
|
171 |
-
|
172 |
-
try:
|
173 |
-
import omegaconf # noqa: F401
|
174 |
-
import yaml # from pyyaml
|
175 |
-
import easydict # noqa: F401
|
176 |
-
except Exception as e:
|
177 |
-
raise RuntimeError(
|
178 |
-
"Missing config deps. Add to requirements.txt: "
|
179 |
-
"'omegaconf>=2.3.0', 'pyyaml', 'easydict'."
|
180 |
-
) from e
|
181 |
-
|
182 |
-
# Import Tencent internals after guards
|
183 |
-
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process
|
184 |
-
from hunyuanvideo_foley.utils.feature_utils import feature_process
|
185 |
-
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
|
186 |
-
|
187 |
-
# ========= Native Model Setup =========
|
188 |
-
MODEL_PATH = os.environ.get("HIFI_FOLEY_MODEL_PATH", str(WEIGHTS_DIR))
|
189 |
-
CONFIG_PATH = str(REPO_DIR / "configs" / "hunyuanvideo-foley-xxl.yaml")
|
190 |
-
|
191 |
-
_model_dict = None
|
192 |
-
_cfg = None
|
193 |
-
_device = None
|
194 |
-
|
195 |
-
def _setup_device(device_str: str = "auto", gpu_id: int = 0) -> torch.device:
|
196 |
if device_str == "auto":
|
197 |
if torch.cuda.is_available():
|
198 |
d = torch.device(f"cuda:{gpu_id}")
|
@@ -209,11 +196,16 @@ def _setup_device(device_str: str = "auto", gpu_id: int = 0) -> torch.device:
|
|
209 |
return d
|
210 |
|
211 |
def auto_load_models() -> str:
|
212 |
-
"""Load
|
213 |
global _model_dict, _cfg, _device
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
216 |
-
|
217 |
if not os.path.exists(CONFIG_PATH):
|
218 |
return f"❌ Config file not found: {CONFIG_PATH}"
|
219 |
|
@@ -222,40 +214,18 @@ def auto_load_models() -> str:
|
|
222 |
logger.info(f"MODEL_PATH: {MODEL_PATH}")
|
223 |
logger.info(f"CONFIG_PATH: {CONFIG_PATH}")
|
224 |
|
225 |
-
#
|
226 |
-
|
227 |
-
_purge_clap_pt_bins()
|
228 |
-
|
229 |
-
# Lock HF Hub to offline so Transformers can't fetch a fresh .bin again
|
230 |
os.environ["HF_HUB_OFFLINE"] = "1"
|
231 |
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
232 |
|
|
|
233 |
_model_dict, _cfg = load_model(MODEL_PATH, CONFIG_PATH, _device)
|
234 |
logger.info("✅ Model loaded")
|
235 |
return "✅ Model loaded"
|
236 |
|
237 |
-
#
|
238 |
-
logger.remove()
|
239 |
-
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
240 |
-
|
241 |
-
try:
|
242 |
-
msg = auto_load_models()
|
243 |
-
logger.info(msg)
|
244 |
-
except Exception as e:
|
245 |
-
print("\n[BOOT][ERROR] auto_load_models() failed:")
|
246 |
-
traceback.print_exc()
|
247 |
-
with gr.Blocks(title="Foley Studio · Boot Error") as demo:
|
248 |
-
gr.Markdown("### ❌ Boot failure\n```\n" + "".join(traceback.format_exc()) + "\n```")
|
249 |
-
demo.launch(server_name="0.0.0.0")
|
250 |
-
raise
|
251 |
-
|
252 |
-
# ========= Preprocessing =========
|
253 |
def preprocess_video(in_path: str) -> Tuple[str, float]:
|
254 |
-
"""
|
255 |
-
- Trim to <= MAX_SECS
|
256 |
-
- Downscale to TARGET_H (keep AR), strip audio
|
257 |
-
- Return processed mp4 path and final duration
|
258 |
-
"""
|
259 |
dur = ffprobe_duration(in_path)
|
260 |
if dur == 0:
|
261 |
raise RuntimeError("Unable to read the video duration.")
|
@@ -265,68 +235,61 @@ def preprocess_video(in_path: str) -> Tuple[str, float]:
|
|
265 |
processed = temp_dir / "proc.mp4"
|
266 |
trim_args = ["-t", str(MAX_SECS)] if dur > MAX_SECS else []
|
267 |
|
268 |
-
# Normalize & remove audio
|
269 |
sh(" ".join([
|
270 |
-
"ffmpeg", "-y", "-i", f"\"{in_path}\"",
|
271 |
-
|
272 |
-
"-
|
273 |
-
"-vcodec", "libx264", "-preset", "veryfast", "-crf", "23",
|
274 |
-
"-movflags", "+faststart",
|
275 |
-
f"\"{trimmed}\""
|
276 |
]))
|
277 |
-
|
278 |
-
# Downscale to TARGET_H; ensure mod2 width
|
279 |
vf = f"scale=-2:{TARGET_H}:flags=bicubic"
|
280 |
sh(" ".join([
|
281 |
"ffmpeg", "-y", "-i", f"\"{trimmed}\"",
|
282 |
-
"-vf", f"\"{vf}\"",
|
283 |
-
"-an",
|
284 |
"-vcodec", "libx264", "-profile:v", "baseline", "-level", "3.1",
|
285 |
-
"-pix_fmt", "yuv420p",
|
286 |
-
"-
|
287 |
-
"-movflags", "+faststart",
|
288 |
-
f"\"{processed}\""
|
289 |
]))
|
|
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
return
|
299 |
|
300 |
-
# ========= Inference (
|
301 |
@GPU(duration=ZEROGPU_DURATION)
|
302 |
-
@torch.inference_mode()
|
303 |
def run_model(video_path: str, prompt_text: str,
|
304 |
guidance_scale: float = 4.5,
|
305 |
num_inference_steps: int = 50,
|
306 |
sample_nums: int = 1):
|
307 |
"""
|
308 |
-
|
309 |
"""
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
text_prompt = (prompt_text or "").strip()
|
314 |
|
315 |
-
# Extract features
|
316 |
visual_feats, text_feats, audio_len_s = feature_process(
|
317 |
video_path, text_prompt, _model_dict, _cfg
|
318 |
)
|
319 |
-
|
320 |
-
# Generate audio (B x C x T)
|
321 |
logger.info(f"Generating {sample_nums} sample(s)...")
|
322 |
audio_batch, sr = denoise_process(
|
323 |
visual_feats, text_feats, audio_len_s, _model_dict, _cfg,
|
324 |
-
guidance_scale=guidance_scale,
|
325 |
-
num_inference_steps=num_inference_steps,
|
326 |
batch_size=sample_nums
|
327 |
)
|
328 |
|
329 |
-
# Save each sample as WAV
|
330 |
out_dir = OUT_DIR / f"job_{uuid.uuid4().hex[:8]}"
|
331 |
out_dir.mkdir(parents=True, exist_ok=True)
|
332 |
wav_paths = []
|
@@ -334,23 +297,8 @@ def run_model(video_path: str, prompt_text: str,
|
|
334 |
wav_p = out_dir / f"generated_audio_{i+1}.wav"
|
335 |
torchaudio.save(str(wav_p), audio_batch[i], sr)
|
336 |
wav_paths.append(str(wav_p))
|
337 |
-
|
338 |
return wav_paths, sr
|
339 |
|
340 |
-
# ========= Optional: Mux Foley back to video =========
|
341 |
-
def mux_audio_with_video(video_path: str, audio_path: str) -> str:
|
342 |
-
out_path = Path(tempfile.mkdtemp(prefix="mux_")) / "with_foley.mp4"
|
343 |
-
sh(" ".join([
|
344 |
-
"ffmpeg", "-y",
|
345 |
-
"-i", f"\"{video_path}\"",
|
346 |
-
"-i", f"\"{audio_path}\"",
|
347 |
-
"-map", "0:v:0", "-map", "1:a:0",
|
348 |
-
"-c:v", "copy", "-c:a", "aac", "-b:a", "192k",
|
349 |
-
"-shortest",
|
350 |
-
f"\"{out_path}\""
|
351 |
-
]))
|
352 |
-
return str(out_path)
|
353 |
-
|
354 |
# ========= UI Handlers =========
|
355 |
def single_generate(video: str, prompt: str, want_mux: bool, project_name: str):
|
356 |
history = []
|
@@ -361,18 +309,12 @@ def single_generate(video: str, prompt: str, want_mux: bool, project_name: str):
|
|
361 |
pre_path, final_dur = preprocess_video(video)
|
362 |
|
363 |
history.append(["Inference", "ZeroGPU native pipeline"])
|
364 |
-
wav_list, sr = run_model(
|
365 |
-
pre_path, prompt or "", guidance_scale=4.5, num_inference_steps=50, sample_nums=1
|
366 |
-
)
|
367 |
if not wav_list:
|
368 |
raise RuntimeError("No audio produced.")
|
369 |
wav = wav_list[0]
|
370 |
|
371 |
-
muxed = None
|
372 |
-
if want_mux:
|
373 |
-
history.append(["Mux", "Merging foley with video"])
|
374 |
-
muxed = mux_audio_with_video(pre_path, wav)
|
375 |
-
|
376 |
history.append(["Done", f"OK · ~{final_dur:.1f}s"])
|
377 |
return wav, muxed, f"✅ Completed (~{final_dur:.1f}s)", history
|
378 |
except Exception as e:
|
@@ -431,35 +373,19 @@ THEME_CSS = f"""
|
|
431 |
color: white;
|
432 |
box-shadow: 0 10px 30px rgba(0,0,0,.35);
|
433 |
}}
|
434 |
-
#hero h1 {{
|
435 |
-
margin: 0
|
436 |
-
font-size: 20px;
|
437 |
-
font-weight: 700;
|
438 |
-
letter-spacing: .2px;
|
439 |
-
}}
|
440 |
-
#hero p {{
|
441 |
-
margin: 0;
|
442 |
-
opacity: .95;
|
443 |
-
}}
|
444 |
.gr-tabitem, .gr-block.gr-group, .gr-panel {{
|
445 |
background: var(--panel);
|
446 |
border-radius: 16px !important;
|
447 |
box-shadow: 0 6px 18px rgba(0,0,0,.28);
|
448 |
border: 1px solid rgba(255,255,255,.04);
|
449 |
}}
|
450 |
-
.gr-button {{
|
451 |
-
border-radius: 12px !important;
|
452 |
-
border: 1px solid rgba(255,255,255,.08) !important;
|
453 |
-
}}
|
454 |
.gradio-container .tabs .tab-nav button.selected {{
|
455 |
-
background: rgba(255,255,255,.06);
|
456 |
-
border-radius: 12px;
|
457 |
-
border: 1px solid rgba(255,255,255,.08);
|
458 |
-
}}
|
459 |
-
.badge {{
|
460 |
-
display:inline-block; padding:2px 8px; border-radius:999px;
|
461 |
-
background: rgba(255,255,255,.12); color:#fff; font-size:12px
|
462 |
}}
|
|
|
463 |
"""
|
464 |
|
465 |
with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
|
@@ -475,16 +401,10 @@ with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
|
|
475 |
with gr.Tabs():
|
476 |
with gr.Tab("🎬 Single Clip"):
|
477 |
with gr.Group():
|
478 |
-
project_name = gr.Textbox(
|
479 |
-
label="Project name (optional)",
|
480 |
-
placeholder="Enter a short label for this clip"
|
481 |
-
)
|
482 |
with gr.Row():
|
483 |
v_single = gr.Video(label=f"Video (≤ ~{MAX_SECS}s recommended)")
|
484 |
-
p_single = gr.Textbox(
|
485 |
-
label="Sound prompt (optional)",
|
486 |
-
placeholder="e.g., soft footsteps on wood, light rain, indoor reverb"
|
487 |
-
)
|
488 |
with gr.Row():
|
489 |
want_mux_single = gr.Checkbox(value=True, label="Mux foley into MP4 output")
|
490 |
run_btn = gr.Button("Generate", variant="primary")
|
@@ -492,10 +412,7 @@ with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
|
|
492 |
out_audio = gr.Audio(label=f"Generated Foley ({SR//1000} kHz WAV)", type="filepath")
|
493 |
out_mux = gr.Video(label="Video + Foley (MP4)", visible=True)
|
494 |
status_md = gr.Markdown()
|
495 |
-
history_table = gr.Dataframe(
|
496 |
-
headers=["Step", "Note"], datatype=["str","str"],
|
497 |
-
interactive=False, wrap=True, label="Activity"
|
498 |
-
)
|
499 |
|
500 |
run_btn.click(
|
501 |
single_generate,
|
@@ -509,16 +426,9 @@ with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
|
|
509 |
want_mux_b = gr.Checkbox(value=True, label="Mux each output")
|
510 |
go_b = gr.Button("Run batch-lite")
|
511 |
batch_status = gr.Markdown()
|
512 |
-
batch_log = gr.Dataframe(
|
513 |
-
headers=["Step","Note"], datatype=["str","str"],
|
514 |
-
interactive=False, wrap=True, label="Batch Log"
|
515 |
-
)
|
516 |
|
517 |
-
go_b.click(
|
518 |
-
batch_lite_generate,
|
519 |
-
inputs=[files, prompt_b, want_mux_b],
|
520 |
-
outputs=[batch_status, batch_log]
|
521 |
-
)
|
522 |
|
523 |
with gr.Tab("ℹ️ Tips"):
|
524 |
gr.Markdown(f"""
|
@@ -532,16 +442,19 @@ with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
|
|
532 |
- Enable **Mux** to get a ready MP4 with the generated foley track.
|
533 |
""")
|
534 |
|
535 |
-
#
|
536 |
try:
|
537 |
from fastapi import FastAPI
|
538 |
-
fastapi_app = demo.app
|
539 |
@fastapi_app.get("/health")
|
540 |
def _health():
|
541 |
-
return {"ok": True, "model_loaded": _model_dict is not None, "device": str(_device)}
|
542 |
except Exception:
|
543 |
pass
|
544 |
|
|
|
|
|
|
|
545 |
try:
|
546 |
demo.queue(max_size=24).launch(server_name="0.0.0.0")
|
547 |
except Exception:
|
|
|
2 |
from pathlib import Path
|
3 |
from typing import Tuple, List
|
4 |
|
5 |
+
# ========= Crash trap & env =========
|
6 |
import faulthandler
|
7 |
faulthandler.enable()
|
|
|
8 |
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "false")
|
9 |
os.environ.setdefault("GRADIO_NUM_PORTS", "1")
|
10 |
os.environ.setdefault("HF_HUB_VERBOSE", "1")
|
|
|
16 |
print(f"\n===== FATAL ({ts}Z) =====================================")
|
17 |
traceback.print_exception(exctype, value, tb)
|
18 |
print("=========================================================\n", flush=True)
|
|
|
19 |
sys.excepthook = _crash_trap
|
|
|
20 |
|
21 |
+
# ========= Minimal imports for startup =========
|
22 |
import gradio as gr
|
23 |
+
from spaces import GPU # ensure checker can see decorator
|
|
|
24 |
from loguru import logger
|
|
|
25 |
|
26 |
+
# ---- ZeroGPU marker FIRST (so startup detector finds it) ----
|
27 |
+
@GPU(duration=5)
|
28 |
+
def _zgpu_marker(_: int = 0) -> int:
|
29 |
+
"""No-op; only to advertise a GPU-decorated function at import-time."""
|
30 |
+
return _
|
31 |
+
|
32 |
+
# ========= Paths & Configs =========
|
33 |
ROOT = Path(__file__).parent.resolve()
|
34 |
REPO_DIR = ROOT / "HunyuanVideo-Foley"
|
35 |
WEIGHTS_DIR = ROOT / "weights"
|
36 |
CACHE_DIR = ROOT / "cache"
|
37 |
OUT_DIR = ROOT / "outputs"
|
38 |
ASSETS = ROOT / "assets"
|
39 |
+
for p in (ASSETS, WEIGHTS_DIR, CACHE_DIR, OUT_DIR):
|
40 |
+
p.mkdir(parents=True, exist_ok=True)
|
41 |
|
42 |
APP_TITLE = os.environ.get("APP_TITLE", "Foley Studio · ZeroGPU")
|
43 |
APP_TAGLINE = os.environ.get("APP_TAGLINE", "Generate scene-true foley for short clips (ZeroGPU-ready).")
|
44 |
PRIMARY_COLOR = os.environ.get("PRIMARY_COLOR", "#6B5BFF")
|
45 |
|
46 |
+
# ZeroGPU-friendly defaults
|
47 |
MAX_SECS = int(os.environ.get("MAX_SECS", "15"))
|
48 |
TARGET_H = int(os.environ.get("TARGET_H", "480"))
|
49 |
SR = int(os.environ.get("TARGET_SR", "48000"))
|
50 |
ZEROGPU_DURATION = int(os.environ.get("ZEROGPU_DURATION", "110"))
|
51 |
|
52 |
+
# ========= Light utils (safe at import) =========
|
53 |
def sh(cmd: str):
|
54 |
print(">>", cmd)
|
55 |
subprocess.run(cmd, shell=True, check=True)
|
|
|
65 |
return 0.0
|
66 |
|
67 |
def _clone_without_lfs():
|
|
|
|
|
|
|
|
|
68 |
if REPO_DIR.exists():
|
69 |
return
|
70 |
try:
|
|
|
104 |
sh(f"git -C {REPO_DIR} fetch --depth 1 origin master")
|
105 |
sh(f"git -C {REPO_DIR} checkout master")
|
106 |
|
107 |
+
def prepare_code_and_weights():
|
108 |
+
from huggingface_hub import snapshot_download
|
109 |
_clone_without_lfs()
|
|
|
110 |
if str(REPO_DIR) not in sys.path:
|
111 |
sys.path.insert(0, str(REPO_DIR))
|
|
|
|
|
112 |
snapshot_download(
|
113 |
repo_id="tencent/HunyuanVideo-Foley",
|
114 |
local_dir=str(WEIGHTS_DIR),
|
|
|
118 |
)
|
119 |
os.environ["HIFI_FOLEY_MODEL_PATH"] = str(WEIGHTS_DIR)
|
120 |
|
121 |
+
# Do lightweight prep (no model init) at import-time
|
122 |
+
prepare_code_and_weights()
|
|
|
|
|
123 |
|
124 |
+
# Prefer safetensors & fast transfer for later downloads
|
125 |
os.environ["TRANSFORMERS_PREFER_SAFETENSORS"] = "1"
|
126 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
127 |
|
128 |
+
# ========= Heavy deps & model utilities (deferred import) =========
|
129 |
+
_model_dict = None
|
130 |
+
_cfg = None
|
131 |
+
_device = None
|
132 |
+
|
133 |
+
def _lazy_heavy_imports():
|
134 |
+
global torch, torchaudio
|
135 |
+
import torch, torchaudio # noqa
|
136 |
+
try:
|
137 |
+
import audiotools # provided by 'descript-audiotools'
|
138 |
+
except Exception as e:
|
139 |
+
raise RuntimeError(
|
140 |
+
"Missing 'audiotools'. Add 'descript-audiotools>=0.7.2' to requirements.txt."
|
141 |
+
) from e
|
142 |
+
try:
|
143 |
+
import omegaconf # noqa
|
144 |
+
import yaml # noqa
|
145 |
+
import easydict # noqa
|
146 |
+
except Exception as e:
|
147 |
+
raise RuntimeError(
|
148 |
+
"Missing config deps. Add: omegaconf>=2.3.0, pyyaml, easydict."
|
149 |
+
) from e
|
150 |
+
|
151 |
+
# Tencent internals
|
152 |
+
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process # noqa
|
153 |
+
from hunyuanvideo_foley.utils.feature_utils import feature_process # noqa
|
154 |
+
from hunyuanvideo_foley.utils.media_utils import merge_audio_video # noqa
|
155 |
+
return torch, torchaudio
|
156 |
+
|
157 |
+
def _ensure_clap_safetensors_only():
|
158 |
+
from huggingface_hub import snapshot_download
|
159 |
+
# Pre-cache only safetensors; block .bin selection
|
160 |
snapshot_download(
|
161 |
repo_id="laion/larger_clap_general",
|
162 |
allow_patterns=[
|
|
|
168 |
local_dir=None,
|
169 |
local_dir_use_symlinks=False,
|
170 |
)
|
171 |
+
# Purge any cached .bin for the model
|
|
|
|
|
172 |
cache_root = Path.home() / ".cache" / "huggingface" / "hub"
|
173 |
+
for pat in [cache_root / "models--laion--larger_clap_general" / "snapshots" / "*" / "*.bin"]:
|
|
|
|
|
174 |
for f in glob.glob(str(pat)):
|
175 |
try:
|
176 |
Path(f).unlink()
|
|
|
178 |
except Exception:
|
179 |
pass
|
180 |
|
181 |
+
def _setup_device(device_str: str = "auto", gpu_id: int = 0):
|
182 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
if device_str == "auto":
|
184 |
if torch.cuda.is_available():
|
185 |
d = torch.device(f"cuda:{gpu_id}")
|
|
|
196 |
return d
|
197 |
|
198 |
def auto_load_models() -> str:
|
199 |
+
"""Load the full Tencent pipeline (lazy; call when needed)."""
|
200 |
global _model_dict, _cfg, _device
|
201 |
+
if _model_dict is not None:
|
202 |
+
return "✅ Model already loaded"
|
203 |
+
|
204 |
+
# Imports & guards
|
205 |
+
torch, _ = _lazy_heavy_imports()
|
206 |
|
207 |
+
MODEL_PATH = os.environ.get("HIFI_FOLEY_MODEL_PATH", str(WEIGHTS_DIR))
|
208 |
+
CONFIG_PATH = str(REPO_DIR / "configs" / "hunyuanvideo-foley-xxl.yaml")
|
209 |
if not os.path.exists(CONFIG_PATH):
|
210 |
return f"❌ Config file not found: {CONFIG_PATH}"
|
211 |
|
|
|
214 |
logger.info(f"MODEL_PATH: {MODEL_PATH}")
|
215 |
logger.info(f"CONFIG_PATH: {CONFIG_PATH}")
|
216 |
|
217 |
+
# Force CLAP to safetensors path
|
218 |
+
_ensure_clap_safetensors_only()
|
|
|
|
|
|
|
219 |
os.environ["HF_HUB_OFFLINE"] = "1"
|
220 |
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
221 |
|
222 |
+
from hunyuanvideo_foley.utils.model_utils import load_model
|
223 |
_model_dict, _cfg = load_model(MODEL_PATH, CONFIG_PATH, _device)
|
224 |
logger.info("✅ Model loaded")
|
225 |
return "✅ Model loaded"
|
226 |
|
227 |
+
# ========= Pre/Post-processing =========
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
def preprocess_video(in_path: str) -> Tuple[str, float]:
|
|
|
|
|
|
|
|
|
|
|
229 |
dur = ffprobe_duration(in_path)
|
230 |
if dur == 0:
|
231 |
raise RuntimeError("Unable to read the video duration.")
|
|
|
235 |
processed = temp_dir / "proc.mp4"
|
236 |
trim_args = ["-t", str(MAX_SECS)] if dur > MAX_SECS else []
|
237 |
|
|
|
238 |
sh(" ".join([
|
239 |
+
"ffmpeg", "-y", "-i", f"\"{in_path}\"", *trim_args,
|
240 |
+
"-an", "-vcodec", "libx264", "-preset", "veryfast", "-crf", "23",
|
241 |
+
"-movflags", "+faststart", f"\"{trimmed}\""
|
|
|
|
|
|
|
242 |
]))
|
|
|
|
|
243 |
vf = f"scale=-2:{TARGET_H}:flags=bicubic"
|
244 |
sh(" ".join([
|
245 |
"ffmpeg", "-y", "-i", f"\"{trimmed}\"",
|
246 |
+
"-vf", f"\"{vf}\"", "-an",
|
|
|
247 |
"-vcodec", "libx264", "-profile:v", "baseline", "-level", "3.1",
|
248 |
+
"-pix_fmt", "yuv420p", "-preset", "veryfast", "-crf", "24",
|
249 |
+
"-movflags", "+faststart", f"\"{processed}\""
|
|
|
|
|
250 |
]))
|
251 |
+
return str(processed), min(dur, float(MAX_SECS))
|
252 |
|
253 |
+
def mux_audio_with_video(video_path: str, audio_path: str) -> str:
|
254 |
+
out_path = Path(tempfile.mkdtemp(prefix="mux_")) / "with_foley.mp4"
|
255 |
+
sh(" ".join([
|
256 |
+
"ffmpeg", "-y", "-i", f"\"{video_path}\"", "-i", f"\"{audio_path}\"",
|
257 |
+
"-map", "0:v:0", "-map", "1:a:0", "-c:v", "copy", "-c:a", "aac", "-b:a", "192k",
|
258 |
+
"-shortest", f"\"{out_path}\""
|
259 |
+
]))
|
260 |
+
return str(out_path)
|
261 |
|
262 |
+
# ========= Inference (GPU-decorated) =========
|
263 |
@GPU(duration=ZEROGPU_DURATION)
|
|
|
264 |
def run_model(video_path: str, prompt_text: str,
|
265 |
guidance_scale: float = 4.5,
|
266 |
num_inference_steps: int = 50,
|
267 |
sample_nums: int = 1):
|
268 |
"""
|
269 |
+
ZeroGPU-safe native pipeline. Returns ([wav_paths], sample_rate).
|
270 |
"""
|
271 |
+
# Lazy load model the first time this runs
|
272 |
+
if _model_dict is None:
|
273 |
+
msg = auto_load_models()
|
274 |
+
logger.info(msg)
|
275 |
+
|
276 |
+
# heavy imports (after model load prepared)
|
277 |
+
import torchaudio
|
278 |
+
from hunyuanvideo_foley.utils.feature_utils import feature_process
|
279 |
+
from hunyuanvideo_foley.utils.model_utils import denoise_process
|
280 |
|
281 |
text_prompt = (prompt_text or "").strip()
|
282 |
|
|
|
283 |
visual_feats, text_feats, audio_len_s = feature_process(
|
284 |
video_path, text_prompt, _model_dict, _cfg
|
285 |
)
|
|
|
|
|
286 |
logger.info(f"Generating {sample_nums} sample(s)...")
|
287 |
audio_batch, sr = denoise_process(
|
288 |
visual_feats, text_feats, audio_len_s, _model_dict, _cfg,
|
289 |
+
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
|
|
|
290 |
batch_size=sample_nums
|
291 |
)
|
292 |
|
|
|
293 |
out_dir = OUT_DIR / f"job_{uuid.uuid4().hex[:8]}"
|
294 |
out_dir.mkdir(parents=True, exist_ok=True)
|
295 |
wav_paths = []
|
|
|
297 |
wav_p = out_dir / f"generated_audio_{i+1}.wav"
|
298 |
torchaudio.save(str(wav_p), audio_batch[i], sr)
|
299 |
wav_paths.append(str(wav_p))
|
|
|
300 |
return wav_paths, sr
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
# ========= UI Handlers =========
|
303 |
def single_generate(video: str, prompt: str, want_mux: bool, project_name: str):
|
304 |
history = []
|
|
|
309 |
pre_path, final_dur = preprocess_video(video)
|
310 |
|
311 |
history.append(["Inference", "ZeroGPU native pipeline"])
|
312 |
+
wav_list, sr = run_model(pre_path, prompt or "", guidance_scale=4.5, num_inference_steps=50, sample_nums=1)
|
|
|
|
|
313 |
if not wav_list:
|
314 |
raise RuntimeError("No audio produced.")
|
315 |
wav = wav_list[0]
|
316 |
|
317 |
+
muxed = mux_audio_with_video(pre_path, wav) if want_mux else None
|
|
|
|
|
|
|
|
|
318 |
history.append(["Done", f"OK · ~{final_dur:.1f}s"])
|
319 |
return wav, muxed, f"✅ Completed (~{final_dur:.1f}s)", history
|
320 |
except Exception as e:
|
|
|
373 |
color: white;
|
374 |
box-shadow: 0 10px 30px rgba(0,0,0,.35);
|
375 |
}}
|
376 |
+
#hero h1 {{ margin: 0 0 6px 0; font-size: 20px; font-weight: 700; letter-spacing: .2px; }}
|
377 |
+
#hero p {{ margin: 0; opacity: .95; }}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
.gr-tabitem, .gr-block.gr-group, .gr-panel {{
|
379 |
background: var(--panel);
|
380 |
border-radius: 16px !important;
|
381 |
box-shadow: 0 6px 18px rgba(0,0,0,.28);
|
382 |
border: 1px solid rgba(255,255,255,.04);
|
383 |
}}
|
384 |
+
.gr-button {{ border-radius: 12px !important; border: 1px solid rgba(255,255,255,.08) !important; }}
|
|
|
|
|
|
|
385 |
.gradio-container .tabs .tab-nav button.selected {{
|
386 |
+
background: rgba(255,255,255,.06); border-radius: 12px; border: 1px solid rgba(255,255,255,.08);
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
}}
|
388 |
+
.badge {{ display:inline-block; padding:2px 8px; border-radius:999px; background: rgba(255,255,255,.12); color:#fff; font-size:12px }}
|
389 |
"""
|
390 |
|
391 |
with gr.Blocks(css=THEME_CSS, title=APP_TITLE, analytics_enabled=False) as demo:
|
|
|
401 |
with gr.Tabs():
|
402 |
with gr.Tab("🎬 Single Clip"):
|
403 |
with gr.Group():
|
404 |
+
project_name = gr.Textbox(label="Project name (optional)", placeholder="Enter a short label for this clip")
|
|
|
|
|
|
|
405 |
with gr.Row():
|
406 |
v_single = gr.Video(label=f"Video (≤ ~{MAX_SECS}s recommended)")
|
407 |
+
p_single = gr.Textbox(label="Sound prompt (optional)", placeholder="e.g., soft footsteps on wood, light rain, indoor reverb")
|
|
|
|
|
|
|
408 |
with gr.Row():
|
409 |
want_mux_single = gr.Checkbox(value=True, label="Mux foley into MP4 output")
|
410 |
run_btn = gr.Button("Generate", variant="primary")
|
|
|
412 |
out_audio = gr.Audio(label=f"Generated Foley ({SR//1000} kHz WAV)", type="filepath")
|
413 |
out_mux = gr.Video(label="Video + Foley (MP4)", visible=True)
|
414 |
status_md = gr.Markdown()
|
415 |
+
history_table = gr.Dataframe(headers=["Step", "Note"], datatype=["str","str"], interactive=False, wrap=True, label="Activity")
|
|
|
|
|
|
|
416 |
|
417 |
run_btn.click(
|
418 |
single_generate,
|
|
|
426 |
want_mux_b = gr.Checkbox(value=True, label="Mux each output")
|
427 |
go_b = gr.Button("Run batch-lite")
|
428 |
batch_status = gr.Markdown()
|
429 |
+
batch_log = gr.Dataframe(headers=["Step","Note"], datatype=["str","str"], interactive=False, wrap=True, label="Batch Log")
|
|
|
|
|
|
|
430 |
|
431 |
+
go_b.click(batch_lite_generate, inputs=[files, prompt_b, want_mux_b], outputs=[batch_status, batch_log])
|
|
|
|
|
|
|
|
|
432 |
|
433 |
with gr.Tab("ℹ️ Tips"):
|
434 |
gr.Markdown(f"""
|
|
|
442 |
- Enable **Mux** to get a ready MP4 with the generated foley track.
|
443 |
""")
|
444 |
|
445 |
+
# Health endpoint
|
446 |
try:
|
447 |
from fastapi import FastAPI
|
448 |
+
fastapi_app = demo.app
|
449 |
@fastapi_app.get("/health")
|
450 |
def _health():
|
451 |
+
return {"ok": True, "model_loaded": _model_dict is not None, "device": str(_device) if _device else None}
|
452 |
except Exception:
|
453 |
pass
|
454 |
|
455 |
+
# Launch
|
456 |
+
logger.remove()
|
457 |
+
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
458 |
try:
|
459 |
demo.queue(max_size=24).launch(server_name="0.0.0.0")
|
460 |
except Exception:
|