Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,10 @@
|
|
1 |
-
|
2 |
# Created by bilsimaging.com
|
3 |
|
4 |
import os
|
5 |
-
|
6 |
os.environ.setdefault("HF_PREFER_SAFETENSORS", "1")
|
7 |
|
8 |
import sys
|
9 |
import json
|
10 |
-
import uuid
|
11 |
-
import time
|
12 |
-
import shutil
|
13 |
import base64
|
14 |
import random
|
15 |
import tempfile
|
@@ -32,15 +27,17 @@ ROOT = Path(__file__).parent.resolve()
|
|
32 |
REPO_DIR = ROOT / "HunyuanVideo-Foley"
|
33 |
WEIGHTS_DIR = Path(os.environ.get("HIFI_FOLEY_MODEL_PATH", str(ROOT / "weights")))
|
34 |
CONFIG_PATH = Path(os.environ.get("HIFI_FOLEY_CONFIG", str(REPO_DIR / "configs" / "hunyuanvideo-foley-xxl.yaml")))
|
|
|
|
|
35 |
OUTPUTS_DIR = Path(os.environ.get("OUTPUTS_DIR", str(ROOT / "outputs" / "autosaved")))
|
36 |
OUTPUTS_DIR.mkdir(parents=True, exist_ok=True)
|
37 |
|
38 |
-
SPACE_TITLE = "🎵
|
39 |
-
SPACE_TAGLINE = "
|
40 |
WATERMARK_NOTE = "Made with ❤️ by bilsimaging.com"
|
41 |
|
42 |
-
# ZeroGPU limit
|
43 |
-
GPU_DURATION = int(os.environ.get("GPU_DURATION_SECS", "
|
44 |
|
45 |
# Globals
|
46 |
_model_dict = None
|
@@ -53,9 +50,9 @@ _device: Optional[torch.device] = None
|
|
53 |
# ------------
|
54 |
def _setup_device(pref: str = "cpu", gpu_id: int = 0) -> torch.device:
|
55 |
"""
|
56 |
-
|
57 |
-
IMPORTANT: Do NOT
|
58 |
-
|
59 |
"""
|
60 |
if pref.startswith("cuda"):
|
61 |
d = torch.device(f"cuda:{gpu_id}")
|
@@ -105,10 +102,30 @@ def prepare_once() -> None:
|
|
105 |
# -----------------------
|
106 |
# Model load & inference
|
107 |
# -----------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def auto_load_models(device_str: str = "cpu") -> str:
|
109 |
"""
|
110 |
Load HunyuanVideo-Foley + encoders on the chosen device.
|
111 |
-
Use device_str=
|
112 |
"""
|
113 |
global _model_dict, _cfg, _device
|
114 |
|
@@ -117,6 +134,7 @@ def auto_load_models(device_str: str = "cpu") -> str:
|
|
117 |
|
118 |
# Make absolutely sure safetensors is preferred
|
119 |
os.environ["HF_PREFER_SAFETENSORS"] = "1"
|
|
|
120 |
|
121 |
sys.path.append(str(REPO_DIR))
|
122 |
from hunyuanvideo_foley.utils.model_utils import load_model
|
@@ -128,6 +146,8 @@ def auto_load_models(device_str: str = "cpu") -> str:
|
|
128 |
|
129 |
try:
|
130 |
_model_dict, _cfg = load_model(str(WEIGHTS_DIR), str(CONFIG_PATH), _device)
|
|
|
|
|
131 |
return "✅ Model loaded."
|
132 |
except OSError as e:
|
133 |
logger.error(str(e))
|
@@ -135,6 +155,7 @@ def auto_load_models(device_str: str = "cpu") -> str:
|
|
135 |
os.environ["HF_PREFER_SAFETENSORS"] = "1"
|
136 |
try:
|
137 |
_model_dict, _cfg = load_model(str(WEIGHTS_DIR), str(CONFIG_PATH), _device)
|
|
|
138 |
return "✅ Model loaded (after safetensors retry)."
|
139 |
except Exception as e2:
|
140 |
logger.error(str(e2))
|
@@ -145,7 +166,7 @@ def auto_load_models(device_str: str = "cpu") -> str:
|
|
145 |
|
146 |
|
147 |
def _merge_audio_video(audio_path: str, video_path: str, out_path: str) -> None:
|
148 |
-
"""Preferred: project
|
149 |
sys.path.append(str(REPO_DIR))
|
150 |
try:
|
151 |
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
|
@@ -167,7 +188,7 @@ def _merge_audio_video(audio_path: str, video_path: str, out_path: str) -> None:
|
|
167 |
|
168 |
def _save_outputs(video_src: str, audio_tensor: torch.Tensor, sr: int, idx: int,
|
169 |
prompt: str) -> str:
|
170 |
-
"""Save WAV + MP4 in autosaved/, add metadata with a soft watermark note."""
|
171 |
# torchaudio expects [C, N]
|
172 |
if audio_tensor.ndim == 1:
|
173 |
audio_tensor = audio_tensor.unsqueeze(0)
|
@@ -222,7 +243,7 @@ def infer_single_video(
|
|
222 |
Generate Foley audio for an uploaded video (1–6 variants).
|
223 |
Returns: (list of output video paths, status message)
|
224 |
"""
|
225 |
-
# Lazy-load on GPU
|
226 |
if _model_dict is None or _cfg is None:
|
227 |
msg = auto_load_models(device_str="cuda")
|
228 |
if not str(msg).startswith("✅"):
|
@@ -235,23 +256,25 @@ def infer_single_video(
|
|
235 |
from hunyuanvideo_foley.utils.feature_utils import feature_process
|
236 |
from hunyuanvideo_foley.utils.model_utils import denoise_process
|
237 |
|
238 |
-
#
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
|
256 |
# save results
|
257 |
outs = []
|
@@ -262,7 +285,7 @@ def infer_single_video(
|
|
262 |
|
263 |
|
264 |
# -------------
|
265 |
-
# Gradio UI
|
266 |
# -------------
|
267 |
def _about_html() -> str:
|
268 |
return f"""
|
@@ -292,8 +315,6 @@ def _about_html() -> str:
|
|
292 |
<h3>MCP & API</h3>
|
293 |
<p>This Space exposes an <b>MCP server</b> and simple REST endpoints (see “API & MCP” tab).
|
294 |
Perfect for media-automation pipelines and tools like <b><a href="https://n8n.partnerlinks.io/bilsimaging" target="_blank" rel="noopener">n8n</a></b>.</p>
|
295 |
-
|
296 |
-
|
297 |
</div>
|
298 |
"""
|
299 |
|
@@ -349,7 +370,7 @@ def create_ui() -> gr.Blocks:
|
|
349 |
v6 = gr.Video(label="Sample 6", height=160, visible=False)
|
350 |
gr.Markdown("<span class='muted'>Autosaved to the Gallery tab.</span>")
|
351 |
|
352 |
-
# Generate handler
|
353 |
def _process_and_update(video_file, text_prompt, cfg, nsteps, nsamples):
|
354 |
outs, msg = infer_single_video(video_file, text_prompt, cfg, nsteps, nsamples)
|
355 |
vis = []
|
@@ -358,37 +379,16 @@ def create_ui() -> gr.Blocks:
|
|
358 |
vis.append(gr.update(visible=True, value=outs[i]))
|
359 |
else:
|
360 |
vis.append(gr.update(visible=(i == 0), value=None if i > 0 else None))
|
361 |
-
|
362 |
-
new_gallery = _list_gallery()
|
363 |
-
return (*vis, msg, new_gallery)
|
364 |
|
365 |
generate.click(
|
366 |
fn=_process_and_update,
|
367 |
inputs=[video_input, text_input, guidance_scale, steps, samples],
|
368 |
-
outputs=[v1, v2, v3, v4, v5, v6, status],
|
369 |
api_name="/infer",
|
370 |
api_description="Generate Foley audio for an uploaded video. Returns up to 6 video+audio files."
|
371 |
)
|
372 |
|
373 |
-
# Workaround: extend outputs to include gallery refresh using a wrapper
|
374 |
-
def _process_and_update_with_gallery(video_file, text_prompt, cfg, nsteps, nsamples):
|
375 |
-
outs, msg = infer_single_video(video_file, text_prompt, cfg, nsteps, nsamples)
|
376 |
-
vis = []
|
377 |
-
for i in range(6):
|
378 |
-
if outs and i < len(outs):
|
379 |
-
vis.append(gr.update(visible=True, value=outs[i]))
|
380 |
-
else:
|
381 |
-
vis.append(gr.update(visible=(i == 0), value=None if i > 0 else None))
|
382 |
-
new_gallery = _list_gallery()
|
383 |
-
return (*vis, msg, new_gallery)
|
384 |
-
|
385 |
-
# Re-bind with gallery as extra output
|
386 |
-
generate.click(
|
387 |
-
fn=_process_and_update_with_gallery,
|
388 |
-
inputs=[video_input, text_input, guidance_scale, steps, samples],
|
389 |
-
outputs=[v1, v2, v3, v4, v5, v6, status,], # gallery will be refreshed on Gallery tab itself
|
390 |
-
)
|
391 |
-
|
392 |
load_btn.click(
|
393 |
fn=lambda: auto_load_models(device_str="cpu"),
|
394 |
inputs=[],
|
@@ -411,7 +411,7 @@ def create_ui() -> gr.Blocks:
|
|
411 |
samples.change(_toggle_vis, inputs=[samples], outputs=[v1, v2, v3, v4, v5, v6])
|
412 |
|
413 |
with gr.Tab("📁 Gallery"):
|
414 |
-
gr.Markdown("Latest generated videos (autosaved to
|
415 |
gallery = gr.Gallery(
|
416 |
value=_list_gallery(),
|
417 |
columns=3,
|
@@ -443,7 +443,7 @@ Loads the model proactively (useful before batch runs).
|
|
443 |
- `shortifoley://status` → quick health info
|
444 |
- `foley_prompt` → reusable guidance for describing the sound
|
445 |
|
446 |
-
Works great
|
447 |
""")
|
448 |
|
449 |
with gr.Tab("ℹ️ About"):
|
@@ -459,7 +459,7 @@ Works great with media-automation in tools like **n8n**: call `load_model_tool`
|
|
459 |
"""
|
460 |
)
|
461 |
|
462 |
-
# ---- REST + MCP endpoints ----
|
463 |
def _download_to_tmp(url: str) -> str:
|
464 |
try:
|
465 |
import requests
|
@@ -499,7 +499,7 @@ Works great with media-automation in tools like **n8n**: call `load_model_tool`
|
|
499 |
sample_nums: int = 1,
|
500 |
) -> Dict[str, List[str]]:
|
501 |
if _model_dict is None or _cfg is None:
|
502 |
-
msg = auto_load_models(device_str="cpu")
|
503 |
if not str(msg).startswith("✅"):
|
504 |
raise RuntimeError(msg)
|
505 |
local = _normalize_video_input(video_url_or_b64)
|
@@ -546,7 +546,7 @@ if __name__ == "__main__":
|
|
546 |
logger.info("===== Application Startup =====\n")
|
547 |
prepare_once()
|
548 |
|
549 |
-
# Probe imports
|
550 |
sys.path.append(str(REPO_DIR))
|
551 |
try:
|
552 |
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process # noqa: F401
|
@@ -557,10 +557,10 @@ if __name__ == "__main__":
|
|
557 |
|
558 |
ui = create_ui()
|
559 |
|
560 |
-
# Enable MCP server
|
561 |
ui.launch(
|
562 |
server_name="0.0.0.0",
|
563 |
share=False,
|
564 |
show_error=True,
|
565 |
-
mcp_server=True, # MCP
|
566 |
)
|
|
|
|
|
1 |
# Created by bilsimaging.com
|
2 |
|
3 |
import os
|
|
|
4 |
os.environ.setdefault("HF_PREFER_SAFETENSORS", "1")
|
5 |
|
6 |
import sys
|
7 |
import json
|
|
|
|
|
|
|
8 |
import base64
|
9 |
import random
|
10 |
import tempfile
|
|
|
27 |
REPO_DIR = ROOT / "HunyuanVideo-Foley"
|
28 |
WEIGHTS_DIR = Path(os.environ.get("HIFI_FOLEY_MODEL_PATH", str(ROOT / "weights")))
|
29 |
CONFIG_PATH = Path(os.environ.get("HIFI_FOLEY_CONFIG", str(REPO_DIR / "configs" / "hunyuanvideo-foley-xxl.yaml")))
|
30 |
+
|
31 |
+
# Always save into outputs/autosaved/
|
32 |
OUTPUTS_DIR = Path(os.environ.get("OUTPUTS_DIR", str(ROOT / "outputs" / "autosaved")))
|
33 |
OUTPUTS_DIR.mkdir(parents=True, exist_ok=True)
|
34 |
|
35 |
+
SPACE_TITLE = "🎵 ShortiFoley — HunyuanVideo-Foley"
|
36 |
+
SPACE_TAGLINE = "Text/Video → Audio Foley · Created by bilsimaging.com"
|
37 |
WATERMARK_NOTE = "Made with ❤️ by bilsimaging.com"
|
38 |
|
39 |
+
# ZeroGPU limit (<=120s recommended)
|
40 |
+
GPU_DURATION = int(os.environ.get("GPU_DURATION_SECS", "110"))
|
41 |
|
42 |
# Globals
|
43 |
_model_dict = None
|
|
|
50 |
# ------------
|
51 |
def _setup_device(pref: str = "cpu", gpu_id: int = 0) -> torch.device:
|
52 |
"""
|
53 |
+
Safe device picker.
|
54 |
+
IMPORTANT: Do NOT probe torch.cuda.is_available() here on Stateless GPU Spaces.
|
55 |
+
Only request CUDA inside a @spaces.GPU function.
|
56 |
"""
|
57 |
if pref.startswith("cuda"):
|
58 |
d = torch.device(f"cuda:{gpu_id}")
|
|
|
102 |
# -----------------------
|
103 |
# Model load & inference
|
104 |
# -----------------------
|
105 |
+
def _force_fp32_on_modules(obj):
|
106 |
+
"""Ensure every torch.nn.Module inside obj is float32 to avoid half/float mismatches."""
|
107 |
+
try:
|
108 |
+
import torch.nn as nn
|
109 |
+
for name in dir(obj):
|
110 |
+
try:
|
111 |
+
m = getattr(obj, name)
|
112 |
+
except Exception:
|
113 |
+
continue
|
114 |
+
if isinstance(m, nn.Module):
|
115 |
+
m.float()
|
116 |
+
if hasattr(obj, "foley_model"): obj.foley_model.float()
|
117 |
+
if hasattr(obj, "dac_model"): obj.dac_model.float()
|
118 |
+
if hasattr(obj, "siglip2_model"): obj.siglip2_model.float()
|
119 |
+
if hasattr(obj, "clap_model"): obj.clap_model.float()
|
120 |
+
if hasattr(obj, "syncformer_model"): obj.syncformer_model.float()
|
121 |
+
except Exception as e:
|
122 |
+
logger.warning(f"FP32 cast warning: {e}")
|
123 |
+
|
124 |
+
|
125 |
def auto_load_models(device_str: str = "cpu") -> str:
|
126 |
"""
|
127 |
Load HunyuanVideo-Foley + encoders on the chosen device.
|
128 |
+
Use device_str='cuda' ONLY inside @spaces.GPU to avoid CUDA init in main process.
|
129 |
"""
|
130 |
global _model_dict, _cfg, _device
|
131 |
|
|
|
134 |
|
135 |
# Make absolutely sure safetensors is preferred
|
136 |
os.environ["HF_PREFER_SAFETENSORS"] = "1"
|
137 |
+
torch.set_float32_matmul_precision("high") # allow TF32 where possible
|
138 |
|
139 |
sys.path.append(str(REPO_DIR))
|
140 |
from hunyuanvideo_foley.utils.model_utils import load_model
|
|
|
146 |
|
147 |
try:
|
148 |
_model_dict, _cfg = load_model(str(WEIGHTS_DIR), str(CONFIG_PATH), _device)
|
149 |
+
# Force fp32 to fix: RuntimeError: Input type (Half) and bias (float) must match
|
150 |
+
_force_fp32_on_modules(_model_dict)
|
151 |
return "✅ Model loaded."
|
152 |
except OSError as e:
|
153 |
logger.error(str(e))
|
|
|
155 |
os.environ["HF_PREFER_SAFETENSORS"] = "1"
|
156 |
try:
|
157 |
_model_dict, _cfg = load_model(str(WEIGHTS_DIR), str(CONFIG_PATH), _device)
|
158 |
+
_force_fp32_on_modules(_model_dict)
|
159 |
return "✅ Model loaded (after safetensors retry)."
|
160 |
except Exception as e2:
|
161 |
logger.error(str(e2))
|
|
|
166 |
|
167 |
|
168 |
def _merge_audio_video(audio_path: str, video_path: str, out_path: str) -> None:
|
169 |
+
"""Preferred: project's util; fallback to ffmpeg."""
|
170 |
sys.path.append(str(REPO_DIR))
|
171 |
try:
|
172 |
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
|
|
|
188 |
|
189 |
def _save_outputs(video_src: str, audio_tensor: torch.Tensor, sr: int, idx: int,
|
190 |
prompt: str) -> str:
|
191 |
+
"""Save WAV + MP4 in outputs/autosaved/, add metadata with a soft watermark note."""
|
192 |
# torchaudio expects [C, N]
|
193 |
if audio_tensor.ndim == 1:
|
194 |
audio_tensor = audio_tensor.unsqueeze(0)
|
|
|
243 |
Generate Foley audio for an uploaded video (1–6 variants).
|
244 |
Returns: (list of output video paths, status message)
|
245 |
"""
|
246 |
+
# Lazy-load on GPU ONLY here (prevents CUDA init in main process)
|
247 |
if _model_dict is None or _cfg is None:
|
248 |
msg = auto_load_models(device_str="cuda")
|
249 |
if not str(msg).startswith("✅"):
|
|
|
256 |
from hunyuanvideo_foley.utils.feature_utils import feature_process
|
257 |
from hunyuanvideo_foley.utils.model_utils import denoise_process
|
258 |
|
259 |
+
# Avoid autocast to float16 to fix Half/Float mismatch inside Synchformer conv3d
|
260 |
+
with torch.autocast(device_type="cuda", enabled=False):
|
261 |
+
# preprocess
|
262 |
+
visual_feats, text_feats, audio_len_s = feature_process(
|
263 |
+
video_file, (text_prompt or "").strip(), _model_dict, _cfg
|
264 |
+
)
|
265 |
|
266 |
+
# generate batch
|
267 |
+
n = int(max(1, min(6, sample_nums)))
|
268 |
+
audio, sr = denoise_process(
|
269 |
+
visual_feats,
|
270 |
+
text_feats,
|
271 |
+
audio_len_s,
|
272 |
+
_model_dict,
|
273 |
+
_cfg,
|
274 |
+
guidance_scale=float(guidance_scale),
|
275 |
+
num_inference_steps=int(num_inference_steps),
|
276 |
+
batch_size=n,
|
277 |
+
)
|
278 |
|
279 |
# save results
|
280 |
outs = []
|
|
|
285 |
|
286 |
|
287 |
# -------------
|
288 |
+
# Gradio UI (with MCP+API inside the same app)
|
289 |
# -------------
|
290 |
def _about_html() -> str:
|
291 |
return f"""
|
|
|
315 |
<h3>MCP & API</h3>
|
316 |
<p>This Space exposes an <b>MCP server</b> and simple REST endpoints (see “API & MCP” tab).
|
317 |
Perfect for media-automation pipelines and tools like <b><a href="https://n8n.partnerlinks.io/bilsimaging" target="_blank" rel="noopener">n8n</a></b>.</p>
|
|
|
|
|
318 |
</div>
|
319 |
"""
|
320 |
|
|
|
370 |
v6 = gr.Video(label="Sample 6", height=160, visible=False)
|
371 |
gr.Markdown("<span class='muted'>Autosaved to the Gallery tab.</span>")
|
372 |
|
373 |
+
# Generate handler (single binding, exact outputs)
|
374 |
def _process_and_update(video_file, text_prompt, cfg, nsteps, nsamples):
|
375 |
outs, msg = infer_single_video(video_file, text_prompt, cfg, nsteps, nsamples)
|
376 |
vis = []
|
|
|
379 |
vis.append(gr.update(visible=True, value=outs[i]))
|
380 |
else:
|
381 |
vis.append(gr.update(visible=(i == 0), value=None if i > 0 else None))
|
382 |
+
return (*vis, msg)
|
|
|
|
|
383 |
|
384 |
generate.click(
|
385 |
fn=_process_and_update,
|
386 |
inputs=[video_input, text_input, guidance_scale, steps, samples],
|
387 |
+
outputs=[v1, v2, v3, v4, v5, v6, status],
|
388 |
api_name="/infer",
|
389 |
api_description="Generate Foley audio for an uploaded video. Returns up to 6 video+audio files."
|
390 |
)
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
load_btn.click(
|
393 |
fn=lambda: auto_load_models(device_str="cpu"),
|
394 |
inputs=[],
|
|
|
411 |
samples.change(_toggle_vis, inputs=[samples], outputs=[v1, v2, v3, v4, v5, v6])
|
412 |
|
413 |
with gr.Tab("📁 Gallery"):
|
414 |
+
gr.Markdown("Latest generated videos (autosaved to <code>outputs/autosaved/</code>).")
|
415 |
gallery = gr.Gallery(
|
416 |
value=_list_gallery(),
|
417 |
columns=3,
|
|
|
443 |
- `shortifoley://status` → quick health info
|
444 |
- `foley_prompt` → reusable guidance for describing the sound
|
445 |
|
446 |
+
Works great for media-automation in tools like **n8n**: call `load_model_tool` once, then `api_generate_from_url` for each clip.
|
447 |
""")
|
448 |
|
449 |
with gr.Tab("ℹ️ About"):
|
|
|
459 |
"""
|
460 |
)
|
461 |
|
462 |
+
# ---- REST + MCP endpoints (inside Blocks) ----
|
463 |
def _download_to_tmp(url: str) -> str:
|
464 |
try:
|
465 |
import requests
|
|
|
499 |
sample_nums: int = 1,
|
500 |
) -> Dict[str, List[str]]:
|
501 |
if _model_dict is None or _cfg is None:
|
502 |
+
msg = auto_load_models(device_str="cpu") # safe in HTTP context
|
503 |
if not str(msg).startswith("✅"):
|
504 |
raise RuntimeError(msg)
|
505 |
local = _normalize_video_input(video_url_or_b64)
|
|
|
546 |
logger.info("===== Application Startup =====\n")
|
547 |
prepare_once()
|
548 |
|
549 |
+
# Probe imports (early surfacing)
|
550 |
sys.path.append(str(REPO_DIR))
|
551 |
try:
|
552 |
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process # noqa: F401
|
|
|
557 |
|
558 |
ui = create_ui()
|
559 |
|
560 |
+
# Enable MCP server so tools/resources/prompts are discoverable
|
561 |
ui.launch(
|
562 |
server_name="0.0.0.0",
|
563 |
share=False,
|
564 |
show_error=True,
|
565 |
+
mcp_server=True, # Enable MCP server
|
566 |
)
|