File size: 6,780 Bytes
d9da484
 
 
1a17445
d9da484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a17445
d9da484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a17445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9da484
 
 
 
 
1a17445
d9da484
 
 
1a17445
d9da484
 
 
 
732135c
d9da484
 
 
 
 
0a324b7
d9da484
 
 
 
 
 
 
 
1a17445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f3270f
 
1a17445
2f3270f
1a17445
2f3270f
 
 
d9da484
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import soundfile as sf
import gradio as gr
import math

def binauralize(audio_file, simulate_rotation, rotation_speed):
    """
    Simulate a binaural (stereo) effect by applying a dynamic panning effect 
    to an input audio file. No HRIR files are required.
    
    Parameters:
        audio_file (str): Path to input audio file (mono or stereo).
        simulate_rotation (bool): If True, apply a dynamic rotation (panning) effect.
        rotation_speed (float): Speed of the rotation effect (in Hz).
        
    Returns:
        output_file (str): Path to the output stereo audio file.
        status (str): Status message.
    """
    try:
        audio, sr = sf.read(audio_file)
    except Exception as e:
        return None, f"Error reading input audio file: {e}"
    
    # Convert to mono if needed.
    if audio.ndim > 1:
        audio = np.mean(audio, axis=1)
    
    t = np.arange(len(audio)) / sr
    
    if simulate_rotation:
        # Compute a time-varying angle for a full cycle (2π) at the desired rotation speed.
        angle = 2 * np.pi * rotation_speed * t
        left = np.cos(angle) * audio
        right = np.sin(angle) * audio
    else:
        left = audio
        right = audio
    
    binaural_audio = np.stack((left, right), axis=-1)
    
    # Normalize to prevent clipping.
    max_val = np.max(np.abs(binaural_audio))
    if max_val > 0:
        binaural_audio = binaural_audio / max_val
    
    output_file = "output_binaural.wav"
    try:
        sf.write(output_file, binaural_audio, sr)
    except Exception as e:
        return None, f"Error writing output audio file: {e}"
    
    return output_file, "Binaural conversion complete!"

def simulate_map(audio_file, listener_x, listener_y):
    """
    Process an input audio file and simulate binaural panning based on the listener's position.
    The source is fixed at (0,0). Listener coordinates (listener_x, listener_y) determine the angle.
    Also applies optional distance attenuation.
    """
    try:
        audio, sr = sf.read(audio_file)
    except Exception as e:
        return None, f"Error reading input audio file: {e}"
    
    if audio.ndim > 1:
        audio = np.mean(audio, axis=1)
        
    # Compute the angle (in radians) between the listener position and the source at (0,0)
    # Here, we use atan2(listener_x, listener_y) so that a positive X (to the right) yields a positive angle.
    theta_rad = math.atan2(listener_x, listener_y)
    theta_deg = theta_rad * 180 / math.pi
    
    # Clamp theta to [-90, 90] degrees (for panning purposes)
    theta_deg = max(-90, min(90, theta_deg))
    
    # Map theta from [-90, 90] to a panning parameter p in radians:
    # When theta_deg = -90, p = 0 (full left); theta_deg = 0, p = 45° in radians; theta_deg = 90, p = 90° (full right)
    p = (theta_deg + 90) * math.pi / 360
    
    left_gain = math.cos(p)
    right_gain = math.sin(p)
    
    # Optional distance attenuation: the further away the listener, the lower the volume.
    distance = math.sqrt(listener_x**2 + listener_y**2)
    attenuation = 1 / (1 + distance)
    
    left = audio * left_gain * attenuation
    right = audio * right_gain * attenuation
    
    binaural_audio = np.stack((left, right), axis=-1)
    
    max_val = np.max(np.abs(binaural_audio))
    if max_val > 0:
        binaural_audio = binaural_audio / max_val
    
    output_file = "output_map.wav"
    try:
        sf.write(output_file, binaural_audio, sr)
    except Exception as e:
        return None, f"Error writing output audio file: {e}"
    
    return output_file, f"Listener: ({listener_x}, {listener_y}), Angle: {theta_deg:.1f}°"

# Create an enhanced UI using Gradio Blocks and Tabs.
with gr.Blocks(title="SonicOrbit", css="""
    .title { font-size: 2.5em; font-weight: bold; text-align: center; margin-bottom: 0.5em; }
    .subtitle { font-size: 1.2em; text-align: center; margin-bottom: 1em; }
    .footer { text-align: center; font-size: 0.9em; margin-top: 2em; color: #555; }
    .tab-description { margin: 10px; font-size: 1em; }
    """) as demo:
    
    gr.Markdown("<div class='title'>SonicOrbit</div>")
    gr.Markdown("<div class='subtitle'>Binaural 360 Audio Converter & Interactive Map</div>")
    
    with gr.Tabs():
        with gr.Tab("Converter"):
            with gr.Row():
                input_audio = gr.Audio(type="filepath", label="Upload Audio (Mono or Stereo)")
            with gr.Row():
                simulate_rotation = gr.Checkbox(label="Simulate Rotation", value=True)
                rotation_speed = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="Rotation Speed (Hz)")
            convert_button = gr.Button("Convert Audio")
            with gr.Row():
                output_audio = gr.Audio(type="filepath", label="Binaural Audio Output")
                status_text = gr.Textbox(label="Status", interactive=False)
            
            convert_button.click(
                fn=binauralize,
                inputs=[input_audio, simulate_rotation, rotation_speed],
                outputs=[output_audio, status_text]
            )
            
        with gr.Tab("Interactive Map"):
            gr.Markdown("<div class='tab-description'>Move the listener around the source (fixed at (0,0)) using the sliders. The binaural panning will update based on the listener's position and distance.</div>")
            with gr.Row():
                map_audio = gr.Audio(type="filepath", label="Upload Audio (Mono or Stereo)")
            with gr.Row():
                listener_x = gr.Slider(-10, 10, value=0, step=0.1, label="Listener X Position")
                listener_y = gr.Slider(-10, 10, value=1, step=0.1, label="Listener Y Position")
            map_button = gr.Button("Update Listener Position")
            with gr.Row():
                map_output = gr.Audio(type="filepath", label="Binaural Map Output")
                map_status = gr.Textbox(label="Status", interactive=False)
            
            map_button.click(
                fn=simulate_map,
                inputs=[map_audio, listener_x, listener_y],
                outputs=[map_output, map_status]
            )
            
    gr.Markdown("""
    <div class='footer'>
      © 2025 SonicOrbit. All rights reserved.<br>
      Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
      and this <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FSonicOrbit" target="_blank">
      <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FSonicOrbit&countColor=%23263759" alt="visitor badge" /></a>
    </div>
    """)

if __name__ == "__main__":
    demo.launch()